计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2014年
1期
81-89
,共9页
虹膜识别%虹膜图像质量评价%离焦模糊
虹膜識彆%虹膜圖像質量評價%離焦模糊
홍막식별%홍막도상질량평개%리초모호
iris recognition%iris image quality assessment%defocus
离焦模糊评价在虹膜识别系统中尤为重要。传统的方法是通过频谱分析测量虹膜图像的离焦模糊程度,这类方法容易受到光照变化以及睫毛和眼皮等噪声区域的影响。提出了一种由粗到精的虹膜图像离焦模糊评价方法。第一步,通过频谱分析去除严重模糊的虹膜图像,进行虹膜图像离焦模糊粗分类。第二步,通过方向金字塔分解,提取虹膜图像的质量特征。在人工合成的离焦模糊虹膜图像数据库中,利用径向基神经网络建立起质量特征与质量等级间的对应关系。通过建立起的模型进行实际的虹膜图像离焦模糊等级预测,以及虹膜图像离焦模糊精分类。在Clarkson数据库上的实验结果证明了该方法不仅可以准确区分清晰图像和离焦模糊图像,而且相比于传统的虹膜图像离焦评价方法更接近于人的视觉感知。
離焦模糊評價在虹膜識彆繫統中尤為重要。傳統的方法是通過頻譜分析測量虹膜圖像的離焦模糊程度,這類方法容易受到光照變化以及睫毛和眼皮等譟聲區域的影響。提齣瞭一種由粗到精的虹膜圖像離焦模糊評價方法。第一步,通過頻譜分析去除嚴重模糊的虹膜圖像,進行虹膜圖像離焦模糊粗分類。第二步,通過方嚮金字塔分解,提取虹膜圖像的質量特徵。在人工閤成的離焦模糊虹膜圖像數據庫中,利用徑嚮基神經網絡建立起質量特徵與質量等級間的對應關繫。通過建立起的模型進行實際的虹膜圖像離焦模糊等級預測,以及虹膜圖像離焦模糊精分類。在Clarkson數據庫上的實驗結果證明瞭該方法不僅可以準確區分清晰圖像和離焦模糊圖像,而且相比于傳統的虹膜圖像離焦評價方法更接近于人的視覺感知。
리초모호평개재홍막식별계통중우위중요。전통적방법시통과빈보분석측량홍막도상적리초모호정도,저류방법용역수도광조변화이급첩모화안피등조성구역적영향。제출료일충유조도정적홍막도상리초모호평개방법。제일보,통과빈보분석거제엄중모호적홍막도상,진행홍막도상리초모호조분류。제이보,통과방향금자탑분해,제취홍막도상적질량특정。재인공합성적리초모호홍막도상수거고중,이용경향기신경망락건립기질량특정여질량등급간적대응관계。통과건립기적모형진행실제적홍막도상리초모호등급예측,이급홍막도상리초모호정분류。재Clarkson수거고상적실험결과증명료해방법불부가이준학구분청석도상화리초모호도상,이차상비우전통적홍막도상리초평개방법경접근우인적시각감지。
Defocus assessment of iris images is crucial for iris recognition system. Traditionally, the spectral power in high frequency band is adopted to measure the iris image quality. However, these methods are easily affected by the illumination variation and outlier regions in iris images, such as eyelash or eyelid regions. This paper proposes a two-step framework for the iris image defocus assessment. In the first step, the traditional iris image defocus metric is introduced to identify severely defocus iris images. In the second step, the quality features of iris images based on steerable pyramid decomposition are extracted. Then, the radial basis network is adopted to formulate the relation-ship between iris image quality features and iris image quality levels on the synthetic database. Finally, the model trained on the synthetic database is directly used to predict the iris image quality. The experimental results conducted on Clarkson database demonstrate that the proposed iris image defocus assessment method not only distinguishes the clear ones from the defocus iris images, but also is more relevant to perceptual quality than state-of-the-art methods.