光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
1期
64-68
,共5页
蒋璐璐%骆美富%张瑜%余心杰%孔汶汶%刘飞
蔣璐璐%駱美富%張瑜%餘心傑%孔汶汶%劉飛
장로로%락미부%장유%여심걸%공문문%류비
变速箱油%近红外光谱%稀疏表示%流形学习%识别
變速箱油%近紅外光譜%稀疏錶示%流形學習%識彆
변속상유%근홍외광보%희소표시%류형학습%식별
Transmission fluid%NIR spectroscopy%Sparse representation%Manifold learning%Identification
利用自编码网络(autoencoder network ,AN)流形学习和稀疏表示(sparse representation ,SR)方法对汽车变速箱油进行近红外光谱品种识别研究。以壳牌、美孚、嘉实多、上海大众和上海通用五种变速箱油为对象,利用A N方法对600~1800 nm近红外光谱数据进行非线性降维,获取10个特征变量。每种变速箱油选取30个样本(共150个样本)作为训练样本,每种30个样本(共150个样本)作为测试样本。所有训练样本的特征变量组成了稀疏表示方法的整体训练样本矩阵,将变速箱油品种分类识别问题转化为一个求解待识别测试样本对于整体训练样本矩阵的稀疏表示问题,通过求解L-1范数意义下的最优化问题来实现。经过主成分分析(principal component analysis ,PCA )和 AN降维后,分别利用线性判断分析法(linear discrimi-nant analysis ,LDA )、偏最小二乘支持向量机法(least squares-support vector machine ,LS-SVM )和本文提出的稀疏表示分类算法进行分类比较。结果表明,结合自编码网络和稀疏表示方法对五种汽车变速箱油品种的平均识别准确率达97.33%,为汽车变速箱油品种近红外光谱快速准确识别提供了有效的新途径。
利用自編碼網絡(autoencoder network ,AN)流形學習和稀疏錶示(sparse representation ,SR)方法對汽車變速箱油進行近紅外光譜品種識彆研究。以殼牌、美孚、嘉實多、上海大衆和上海通用五種變速箱油為對象,利用A N方法對600~1800 nm近紅外光譜數據進行非線性降維,穫取10箇特徵變量。每種變速箱油選取30箇樣本(共150箇樣本)作為訓練樣本,每種30箇樣本(共150箇樣本)作為測試樣本。所有訓練樣本的特徵變量組成瞭稀疏錶示方法的整體訓練樣本矩陣,將變速箱油品種分類識彆問題轉化為一箇求解待識彆測試樣本對于整體訓練樣本矩陣的稀疏錶示問題,通過求解L-1範數意義下的最優化問題來實現。經過主成分分析(principal component analysis ,PCA )和 AN降維後,分彆利用線性判斷分析法(linear discrimi-nant analysis ,LDA )、偏最小二乘支持嚮量機法(least squares-support vector machine ,LS-SVM )和本文提齣的稀疏錶示分類算法進行分類比較。結果錶明,結閤自編碼網絡和稀疏錶示方法對五種汽車變速箱油品種的平均識彆準確率達97.33%,為汽車變速箱油品種近紅外光譜快速準確識彆提供瞭有效的新途徑。
이용자편마망락(autoencoder network ,AN)류형학습화희소표시(sparse representation ,SR)방법대기차변속상유진행근홍외광보품충식별연구。이각패、미부、가실다、상해대음화상해통용오충변속상유위대상,이용A N방법대600~1800 nm근홍외광보수거진행비선성강유,획취10개특정변량。매충변속상유선취30개양본(공150개양본)작위훈련양본,매충30개양본(공150개양본)작위측시양본。소유훈련양본적특정변량조성료희소표시방법적정체훈련양본구진,장변속상유품충분류식별문제전화위일개구해대식별측시양본대우정체훈련양본구진적희소표시문제,통과구해L-1범수의의하적최우화문제래실현。경과주성분분석(principal component analysis ,PCA )화 AN강유후,분별이용선성판단분석법(linear discrimi-nant analysis ,LDA )、편최소이승지지향량궤법(least squares-support vector machine ,LS-SVM )화본문제출적희소표시분류산법진행분류비교。결과표명,결합자편마망락화희소표시방법대오충기차변속상유품충적평균식별준학솔체97.33%,위기차변속상유품충근홍외광보쾌속준학식별제공료유효적신도경。
An identification method based on sparse representation (SR) combined with autoencoder network (AN ) manifold learning was proposed for discriminating the varieties of transmission fluid by using near infrared (NIR) spectroscopy technolo-gy .NIR transmittance spectra from 600 to 1 800 nm were collected from 300 transmission fluid samples of five varieties (each variety consists of 60 samples) .For each variety ,30 samples were randomly selected as training set (totally 150 samples) ,and the rest 30 ones as testing set (totally 150 samples) .Autoencoder network manifold learning was applied to obtain the character-istic information in the 600~1 800 nm spectra and the number of characteristics was reduced to 10 .Principal component analysis (PCA) was applied to extract several relevant variables to represent the useful information of spectral variables .All of the train-ing samples made up a data dictionary of the sparse representation (SR) .Then the transmission fluid variety identification prob-lem was reduced to the problem as how to represent the testing samples from the data dictionary (training samples data) .The i-dentification result thus could be achieved by solving the L-1 norm-based optimization problem .We compared the effectiveness of the proposed method with that of linear discriminant analysis (LDA ) ,least squares support vector machine (LS-SVM ) and sparse representation (SR) using the relevant variables selected by principal component analysis (PCA ) and AN .Experimental results demonstrated that the overall identification accuracy of the proposed method for the five transmission fluid varieties was 97 .33% by AN-SR ,which was significantly higher than that of LDA or LS-SVM .Therefore ,the proposed method can provide a new effective method for identification of transmission fluid variety .