光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
1期
58-62,63
,共6页
王鹏%周洪雷%薛付忠%王振国
王鵬%週洪雷%薛付忠%王振國
왕붕%주홍뢰%설부충%왕진국
傅里叶变换红外光谱%中药%寒热药性%模式识别
傅裏葉變換紅外光譜%中藥%寒熱藥性%模式識彆
부리협변환홍외광보%중약%한열약성%모식식별
Fourier transform infrared spectroscopy%Traditional Chinese medicine%Cold and heat nature of a medicine%Pattern recognition
对60种植物类中药提取物的红外光谱药性特征标记及其模式识别模型进行评价筛选。利用傅里叶变换红外光谱结合(linear discriminant analysis ,LDA ),(logistic discriminant analysis ,Logistic-DA ),(prin-cipal component analysis-linear discriminant analysis ,PCA-LDA ),(partial least-squares discriminant analysis , PLS-DA),(random forest ,RF),(support vector machine ,SVM)六种模式识别技术进行研究。水提取组采用加热回流提取1.5 h ,无水乙醇、氯仿、石油醚提取组采用室温超声提取45 min。首先分别建立六种模式识别模型,然后采用四种统计方法综合识别,包括60味中药组内回代、60味中药10次迭代5折交叉验证、48味中药训练集、12味中药测试集。选取组内回代识别正确率、交叉验证识别正确率、组外预测正确率同时很高,且理论图谱反映寒热中药原始图谱分布特征者为适宜模型。LDA 和SVM 是水提取物红外光谱的适宜模式识别模型,LDA是无水乙醇提取物红外光谱的适宜模式识别模型,SVM是氯仿提取物红外光谱的适宜模式识别模型,石油醚提取识别效果不佳。结论:根据适宜识别模型,通过红外光谱数据可识别表征中药寒热成分和寒热程度的特征参数,寒热成分特征参数为与红外光谱吸收位置波谱相对应的识别模型的识别系数,识别系数大于零为寒性标记,识别系数小于零为热性标记;寒热程度特征参数为识别模型的识别得分,得分越大(正值)则寒性越强,得分越小(负值)则热性越强。
對60種植物類中藥提取物的紅外光譜藥性特徵標記及其模式識彆模型進行評價篩選。利用傅裏葉變換紅外光譜結閤(linear discriminant analysis ,LDA ),(logistic discriminant analysis ,Logistic-DA ),(prin-cipal component analysis-linear discriminant analysis ,PCA-LDA ),(partial least-squares discriminant analysis , PLS-DA),(random forest ,RF),(support vector machine ,SVM)六種模式識彆技術進行研究。水提取組採用加熱迴流提取1.5 h ,無水乙醇、氯倣、石油醚提取組採用室溫超聲提取45 min。首先分彆建立六種模式識彆模型,然後採用四種統計方法綜閤識彆,包括60味中藥組內迴代、60味中藥10次迭代5摺交扠驗證、48味中藥訓練集、12味中藥測試集。選取組內迴代識彆正確率、交扠驗證識彆正確率、組外預測正確率同時很高,且理論圖譜反映寒熱中藥原始圖譜分佈特徵者為適宜模型。LDA 和SVM 是水提取物紅外光譜的適宜模式識彆模型,LDA是無水乙醇提取物紅外光譜的適宜模式識彆模型,SVM是氯倣提取物紅外光譜的適宜模式識彆模型,石油醚提取識彆效果不佳。結論:根據適宜識彆模型,通過紅外光譜數據可識彆錶徵中藥寒熱成分和寒熱程度的特徵參數,寒熱成分特徵參數為與紅外光譜吸收位置波譜相對應的識彆模型的識彆繫數,識彆繫數大于零為寒性標記,識彆繫數小于零為熱性標記;寒熱程度特徵參數為識彆模型的識彆得分,得分越大(正值)則寒性越彊,得分越小(負值)則熱性越彊。
대60충식물류중약제취물적홍외광보약성특정표기급기모식식별모형진행평개사선。이용부리협변환홍외광보결합(linear discriminant analysis ,LDA ),(logistic discriminant analysis ,Logistic-DA ),(prin-cipal component analysis-linear discriminant analysis ,PCA-LDA ),(partial least-squares discriminant analysis , PLS-DA),(random forest ,RF),(support vector machine ,SVM)륙충모식식별기술진행연구。수제취조채용가열회류제취1.5 h ,무수을순、록방、석유미제취조채용실온초성제취45 min。수선분별건립륙충모식식별모형,연후채용사충통계방법종합식별,포괄60미중약조내회대、60미중약10차질대5절교차험증、48미중약훈련집、12미중약측시집。선취조내회대식별정학솔、교차험증식별정학솔、조외예측정학솔동시흔고,차이론도보반영한열중약원시도보분포특정자위괄의모형。LDA 화SVM 시수제취물홍외광보적괄의모식식별모형,LDA시무수을순제취물홍외광보적괄의모식식별모형,SVM시록방제취물홍외광보적괄의모식식별모형,석유미제취식별효과불가。결론:근거괄의식별모형,통과홍외광보수거가식별표정중약한열성분화한열정도적특정삼수,한열성분특정삼수위여홍외광보흡수위치파보상대응적식별모형적식별계수,식별계수대우령위한성표기,식별계수소우령위열성표기;한열정도특정삼수위식별모형적식별득분,득분월대(정치)칙한성월강,득분월소(부치)칙열성월강。
By using the Fourier transform infrared spectroscopy and linear discriminant analysis (LDA ) ,logistic discriminant a-nalysis(Logistic-DA) ,principal component analysis-linear discriminant analysis(PCA-LDA) ,partial least-squares discriminant analysis(PLS-DA) ,random forest(RF) ,support vector machine(SVM) ,infrared spectra of 60 kinds of plant extract of Chinese traditional medicine were analyzed and the identification and evaluation of characteristics of the regional markers associated with cold and heat nature were studied .Results indicated that LDA and SVM are suitable for the recognition model of water extract infrared spectral data ,LDA is suitable for the identification model of anhydrous ethanol extract infrared spectral data ,SVM is suitable for the identification model of chloroform extract infrared spectral data ,while petroleum ether extract group recognition effect is not ideal .According to the suitable characteristic parameters identification model ,data were analyzed by infrared spec-troscopy ,and parameters and resistance characteristics of the traditional Chinese drug composition can be obtained .Regional characteristics of these two parameters can be used to identify drug ingredients ,and can also be used to indicate different degrees of resistance characteristics of traditional Chinese medicine .Component parameter is model identification coefficient correspond-ing to the position of spectrum and infrared ,with a value greater than zero it is cold nature marker ,while with a value less than zero it is heat nature marker ;model identification score is a parameter reflecting the degree of cold and heat nature ,the greater the score (positive) ,the more it is cold ,while the smaller the score ,the more it is hot .a parameter reflecting the degree of cold and heat ,the greater the score (positive) is cold more strong ,the score is small (negative) heat stronger .