电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
1期
121-127
,共7页
DNA序列压缩%Memetic算法%扩展的近似重复矢量(EARV)%粒子群优化(PSO)%动态混沌局部搜索
DNA序列壓縮%Memetic算法%擴展的近似重複矢量(EARV)%粒子群優化(PSO)%動態混沌跼部搜索
DNA서렬압축%Memetic산법%확전적근사중복시량(EARV)%입자군우화(PSO)%동태혼돈국부수색
DNA sequence compression%Memetic algorithm%Extended Approximate Repeat Vector (EARV)%Particle Swarm Optimization (PSO)%Dynamic chaotic local search
该文提出一种基于CPMA(Collaborative Particle swarm optimization-based Memetic Algorithm)算法的DNA 序列数据压缩方法, CPMA 分别采用综合学习粒子群优化(Comprehensive Learning Particle Swarm Optimization, CLPSO)算法和动态调整的混沌搜索算子(Dynamic Adjustive Chaotic Search Operator, DACSO)进行全局搜索和局部搜索。该文采用 CPMA 寻找全局最优的基于扩展操作的近似重复矢量(Extended Approximate Repeat Vector, EARV)码书,并用此码书压缩DNA序列数据。实验结果表明,CPMA比其它优化算法有很大的改善,对文中采用的大部分测试函数,其解都非常接近全局最优点;对于DNA基准测序序列,与文中所列的经典DNA序列压缩算法相比,基于CPMA算法的压缩性能得到了显著提升。
該文提齣一種基于CPMA(Collaborative Particle swarm optimization-based Memetic Algorithm)算法的DNA 序列數據壓縮方法, CPMA 分彆採用綜閤學習粒子群優化(Comprehensive Learning Particle Swarm Optimization, CLPSO)算法和動態調整的混沌搜索算子(Dynamic Adjustive Chaotic Search Operator, DACSO)進行全跼搜索和跼部搜索。該文採用 CPMA 尋找全跼最優的基于擴展操作的近似重複矢量(Extended Approximate Repeat Vector, EARV)碼書,併用此碼書壓縮DNA序列數據。實驗結果錶明,CPMA比其它優化算法有很大的改善,對文中採用的大部分測試函數,其解都非常接近全跼最優點;對于DNA基準測序序列,與文中所列的經典DNA序列壓縮算法相比,基于CPMA算法的壓縮性能得到瞭顯著提升。
해문제출일충기우CPMA(Collaborative Particle swarm optimization-based Memetic Algorithm)산법적DNA 서렬수거압축방법, CPMA 분별채용종합학습입자군우화(Comprehensive Learning Particle Swarm Optimization, CLPSO)산법화동태조정적혼돈수색산자(Dynamic Adjustive Chaotic Search Operator, DACSO)진행전국수색화국부수색。해문채용 CPMA 심조전국최우적기우확전조작적근사중복시량(Extended Approximate Repeat Vector, EARV)마서,병용차마서압축DNA서렬수거。실험결과표명,CPMA비기타우화산법유흔대적개선,대문중채용적대부분측시함수,기해도비상접근전국최우점;대우DNA기준측서서렬,여문중소렬적경전DNA서렬압축산법상비,기우CPMA산법적압축성능득도료현저제승。
A DNA sequence compression method based on Collaborative Particle swarm optimization-based Memetic Algorithm (CPMA) is proposed. CPMA adopts the Comprehensive Learning Particle Swarm Optimization (CLPSO) as the global search and a Dynamic Adjustive Chaotic Search Operator (DACSO) as the local search respectively. In CPMA, it looks for the global optimal code book based on Extended Approximate Repeat Vector (EARV), by which the DNA sequence is compressed. Experimental results demonstrate better performance of HMPSO than the other optimization algorithms, and it is very close to the global optimization point in most of the test functions adopted by the paper. The compression performance of the method based on CPMA is markedly improved compared to many of the classical DNA sequence compression algorithms.