地球信息科学学报
地毬信息科學學報
지구신식과학학보
GEO-INFORMATION SCIENCE
2014年
1期
45-53
,共9页
地表温度%地表参量%滑动窗口%逐步回归%DisTrad模型
地錶溫度%地錶參量%滑動窗口%逐步迴歸%DisTrad模型
지표온도%지표삼량%활동창구%축보회귀%DisTrad모형
land surface temperature%land surface parameter%moving window%stepwise%DisTrad
DisTrad(Disaggregation procedure for radiometric surface temperature)模型是常用于遥感地表温度空间分辨率提升的主要模型之一。DisTrad模型常面向空间范围有限、地形相对平坦的研究区域,且常选用植被参数(如植被指数或植被覆盖度等)作为关键参数。然而在空间范围较大、地形起伏地区,地表温度的空间变异可能无法完全通过植被参数解释。本研究选取四川盆地及毗邻地区为研究区,通过模拟数据研究DisTrad模型在地形起伏区地表温度空间分辨率提升中的适用性。数字高程模型(Digital Elevation Model,DEM)、归一化差值植被指数(Normal-ized Difference Vegetation Index, NDVI)等参数,采用滑动窗口逐步回归,将空间分辨率为6km的地表温度提升至空间分辨率为1km。研究结果表明,改进的模型在平原及海拔较低的高原地区提升获得的地表温度空间分辨率具有较高精度,均方根误差(Root Mean Square Error, RMSE)为0.5K左右;在地形起伏较大的地区,RMSE为4K,验证了改进的模型提升的可行性。
DisTrad(Disaggregation procedure for radiometric surface temperature)模型是常用于遙感地錶溫度空間分辨率提升的主要模型之一。DisTrad模型常麵嚮空間範圍有限、地形相對平坦的研究區域,且常選用植被參數(如植被指數或植被覆蓋度等)作為關鍵參數。然而在空間範圍較大、地形起伏地區,地錶溫度的空間變異可能無法完全通過植被參數解釋。本研究選取四川盆地及毗鄰地區為研究區,通過模擬數據研究DisTrad模型在地形起伏區地錶溫度空間分辨率提升中的適用性。數字高程模型(Digital Elevation Model,DEM)、歸一化差值植被指數(Normal-ized Difference Vegetation Index, NDVI)等參數,採用滑動窗口逐步迴歸,將空間分辨率為6km的地錶溫度提升至空間分辨率為1km。研究結果錶明,改進的模型在平原及海拔較低的高原地區提升穫得的地錶溫度空間分辨率具有較高精度,均方根誤差(Root Mean Square Error, RMSE)為0.5K左右;在地形起伏較大的地區,RMSE為4K,驗證瞭改進的模型提升的可行性。
DisTrad(Disaggregation procedure for radiometric surface temperature)모형시상용우요감지표온도공간분변솔제승적주요모형지일。DisTrad모형상면향공간범위유한、지형상대평탄적연구구역,차상선용식피삼수(여식피지수혹식피복개도등)작위관건삼수。연이재공간범위교대、지형기복지구,지표온도적공간변이가능무법완전통과식피삼수해석。본연구선취사천분지급비린지구위연구구,통과모의수거연구DisTrad모형재지형기복구지표온도공간분변솔제승중적괄용성。수자고정모형(Digital Elevation Model,DEM)、귀일화차치식피지수(Normal-ized Difference Vegetation Index, NDVI)등삼수,채용활동창구축보회귀,장공간분변솔위6km적지표온도제승지공간분변솔위1km。연구결과표명,개진적모형재평원급해발교저적고원지구제승획득적지표온도공간분변솔구유교고정도,균방근오차(Root Mean Square Error, RMSE)위0.5K좌우;재지형기복교대적지구,RMSE위4K,험증료개진적모형제승적가행성。
Accurate temporal and spatial estimation of land surface temperature (LST) is important for evaluat-ing climate change, global hydrological cycle and monitoring urban heat islands (UHI). LSTs with high quality can be routine by using satellite remote sensing. However, characters of both high spatial and temporal resolu-tions have been difficult. Cloud cover further reduces the useable observations of surface conditions. Monthly LST product (MOD11C3) composited and averaged temperature values at 0.05 degree latitude/longitude grids (CMG) have coarse spatial resolution (~5.5 km). An alternative to the lack of high-resolution observations is to disaggregate LST data using other products of MODIS of 1 km observations. Historically, disaggregation of LST at high resolutions (1 km) has relied on vegetation index, e.g. NDVI (Normalized Difference Vegetation Index). However, this downscaling method is not adequate for areas encompass basin and upland. We applied Digital El-evation Model (DEM), NDVI, Enhanced Vegetation Index (EVI), Albedo, and slope to resolve this drawback by utilizing stepwise regression method with a moving window. The following is the algorithm. Land surface param-eter (LSP) data are sampled to the coarser thermal resolution. A stepwise regression is performed between the monthly temperature product and sampled land surface parameters, then a function f (LSP) framed. The parame-ters of the regression function are applied to LSP data at high, target resolution. Coarse-scale residual field repre-sent variability in temperature driven by other factors other than vegetation and DEM is added back into the high-resolution base map. So, we utilize LSP to sharpen original images. A reasonable rectangle box that making certain pixel be center is outlined for stepwise regression. Function is obtained by stepwise between LST and LSP. Loop and downscale the other pixels until image processed. Coefficients and intercept are saved as images. The disaggregation LST is achieved by substituting images at target resolution to function. The size of the box flowed over the image in this paper is 19 by 19. Stepwise disaggregation algorithm is applied to the resample MOD13A1 and DEM data. The fitting parameters vary with different window scenes. In contrast, the number of DEM entered function is much larger than NDVI. That indicated DEM is more significant than NDVI, EVI, albe-do and slope in most fields of the study area, especially in mountain area. The RMSE of downscaling LST is 4.93K. Image sharpening is therefore not a replacement for high-resolution thermal imaging sensors. Neverthe-less, in the absence of thermal imagery because of cloud in Sichuan, DisTrad seems to be able to enhance the res-olution of MOD11C3 product.