高校地质学报
高校地質學報
고교지질학보
GEOLOGICAL JOURNAL OF CHINA UNIVERSITIES
2013年
4期
588-593
,共6页
致密砂岩%鄂尔多斯%柔性孔隙模型%弹性参数
緻密砂巖%鄂爾多斯%柔性孔隙模型%彈性參數
치밀사암%악이다사%유성공극모형%탄성삼수
tight gas sands%Ordos Basin%Soft Porosity Model%elastic properties
该文作者采集了鄂尔多斯大牛地气田二叠系下石盒子组钻井岩芯,在60 Mpa围压和50℃温度下进行了岩芯弹性参数测试。通过岩石薄片分析孔隙结构特征,按照孔隙的纵横比值(<0.01,0.01~0.9,>0.9)将孔隙划分为三类,进而对柔性孔隙模型理论进行了修改,建立了孔隙结构模型。建立的模型应用于常规测井数据,通过自洽算法进行了纵波、横波速度和弹性参数的估算。模型计算结果与测井曲线、岩芯实验测试结果进行了对比。结果显示模型与测井的速度曲线和泊松比值曲线能很好地吻合,但模型预测的波阻抗值稍大于岩芯的测试结果。其原因在于利用模型计算声波阻抗时使用的密度值来自于测井数据,而在储层状态下,由于上覆地层的压力,会使得岩石的密度增大,导致波阻抗值上升。研究成果表明了柔性孔隙模型在鄂尔多斯致密砂岩弹性参数的预测中能取得很好的效果。
該文作者採集瞭鄂爾多斯大牛地氣田二疊繫下石盒子組鑽井巖芯,在60 Mpa圍壓和50℃溫度下進行瞭巖芯彈性參數測試。通過巖石薄片分析孔隙結構特徵,按照孔隙的縱橫比值(<0.01,0.01~0.9,>0.9)將孔隙劃分為三類,進而對柔性孔隙模型理論進行瞭脩改,建立瞭孔隙結構模型。建立的模型應用于常規測井數據,通過自洽算法進行瞭縱波、橫波速度和彈性參數的估算。模型計算結果與測井麯線、巖芯實驗測試結果進行瞭對比。結果顯示模型與測井的速度麯線和泊鬆比值麯線能很好地吻閤,但模型預測的波阻抗值稍大于巖芯的測試結果。其原因在于利用模型計算聲波阻抗時使用的密度值來自于測井數據,而在儲層狀態下,由于上覆地層的壓力,會使得巖石的密度增大,導緻波阻抗值上升。研究成果錶明瞭柔性孔隙模型在鄂爾多斯緻密砂巖彈性參數的預測中能取得很好的效果。
해문작자채집료악이다사대우지기전이첩계하석합자조찬정암심,재60 Mpa위압화50℃온도하진행료암심탄성삼수측시。통과암석박편분석공극결구특정,안조공극적종횡비치(<0.01,0.01~0.9,>0.9)장공극화분위삼류,진이대유성공극모형이론진행료수개,건립료공극결구모형。건립적모형응용우상규측정수거,통과자흡산법진행료종파、횡파속도화탄성삼수적고산。모형계산결과여측정곡선、암심실험측시결과진행료대비。결과현시모형여측정적속도곡선화박송비치곡선능흔호지문합,단모형예측적파조항치초대우암심적측시결과。기원인재우이용모형계산성파조항시사용적밀도치래자우측정수거,이재저층상태하,유우상복지층적압력,회사득암석적밀도증대,도치파조항치상승。연구성과표명료유성공극모형재악이다사치밀사암탄성삼수적예측중능취득흔호적효과。
Core samples from a well in Ordos basin are used to study the elastic properties of tight gas sands in lower Shihezi Formation. Elastic parameters are measured at in-situ physical conditions. The total pore space is divided into three space types based on the microscopic analyses. Soft porosity model (SPM) is modified to construct a new model which could represent the tight gas sands reservoir. A modeling example using the well-log data from Daniudi gas field is completed using self-consistent theory. Model predicted results include Vp, Vs, Poisson’s ratio, acoustic impedance of P wave and acoustic impedance of S wave. Comparison of those elastic properties derived from the model, well-log, and core sample measurement is conducted to evaluate the new model. Predicted Vp, Vs are overall in agreement with well-log data. The same agreement also appears in Poisson’ s ratio curve. But the model predicts a slightly different behavior of rocks from the core samples in the impedance of P wave (AIp) and acoustic impedance of S wave (AIs). Predicted AIp and AIs are slightly higher than those of core samples. Pressure may be the main factor responsible for the difference between the model and core samples. The AIp and AIs are calculated from velocity and density, which are derived from the well-log data. The density in-situ condition is higher than what is measured in laboratory because of the pressure produced by upper strata. So the predicted AIp and AIs show a slight rise in comparison to the core samples. This article provides a good example of applying SPM to tight gas sands of Ordos, and show that the model will be very helpful to predict elastic properties of tight gas reservoirs.