新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2013年
6期
442-447
,共6页
邓海亮%李克智%李贺军%杨宗伦%曹伟锋%卢锦花
鄧海亮%李剋智%李賀軍%楊宗倫%曹偉鋒%盧錦花
산해량%리극지%리하군%양종륜%조위봉%로금화
C/C复合材料%化学气相渗透%致密化特性
C/C複閤材料%化學氣相滲透%緻密化特性
C/C복합재료%화학기상삼투%치밀화특성
Carbon/carbon composites%Chemical vapor infiltration%Densification behavior
采用薄膜沸腾CVI以双热源加热的方法在900~1200℃下热解二甲苯前驱体增密二维针刺炭毡预制体,30~35 h内制备出密度1.70 g/cm3~1.73 g/cm3的C/C复合材料。研究致密化过程中热解炭基体的沉积速率变化规律,应用排水法和偏光显微镜分别测试材料的密度及热解炭层的厚度。结果表明,当沉积温度由900~1000℃升高至1100~1200℃时,沉积前沿的厚度拓宽,热解炭的初始沉积速率增大,但高沉积温度下预制体边缘将优先完成致密化,导致材料的平均密度由1.72~1.73 g/cm3降低至1.70,致密化均匀性变差,材料轴向和径向方向的密度偏差高于0.04 g/cm3。上热源开多个轴向通孔可使沉积前沿的厚度减小,前驱体在预制体内的传输效率提高,进而改善较高沉积温度下材料的致密化效果。
採用薄膜沸騰CVI以雙熱源加熱的方法在900~1200℃下熱解二甲苯前驅體增密二維針刺炭氈預製體,30~35 h內製備齣密度1.70 g/cm3~1.73 g/cm3的C/C複閤材料。研究緻密化過程中熱解炭基體的沉積速率變化規律,應用排水法和偏光顯微鏡分彆測試材料的密度及熱解炭層的厚度。結果錶明,噹沉積溫度由900~1000℃升高至1100~1200℃時,沉積前沿的厚度拓寬,熱解炭的初始沉積速率增大,但高沉積溫度下預製體邊緣將優先完成緻密化,導緻材料的平均密度由1.72~1.73 g/cm3降低至1.70,緻密化均勻性變差,材料軸嚮和徑嚮方嚮的密度偏差高于0.04 g/cm3。上熱源開多箇軸嚮通孔可使沉積前沿的厚度減小,前驅體在預製體內的傳輸效率提高,進而改善較高沉積溫度下材料的緻密化效果。
채용박막비등CVI이쌍열원가열적방법재900~1200℃하열해이갑분전구체증밀이유침자탄전예제체,30~35 h내제비출밀도1.70 g/cm3~1.73 g/cm3적C/C복합재료。연구치밀화과정중열해탄기체적침적속솔변화규률,응용배수법화편광현미경분별측시재료적밀도급열해탄층적후도。결과표명,당침적온도유900~1000℃승고지1100~1200℃시,침적전연적후도탁관,열해탄적초시침적속솔증대,단고침적온도하예제체변연장우선완성치밀화,도치재료적평균밀도유1.72~1.73 g/cm3강저지1.70,치밀화균균성변차,재료축향화경향방향적밀도편차고우0.04 g/cm3。상열원개다개축향통공가사침적전연적후도감소,전구체재예제체내적전수효솔제고,진이개선교고침적온도하재료적치밀화효과。
Two-dimensional needle-punched carbon fiber felts were densified using film boiling chemical vapor infiltration with heat-ers above and below the felt and using xylene pyrolysis at 900-1 200℃. The pyrocarbon deposition rate was calculated from the mass gain of the composites. The density of the composites and the thickness of the pyrocarbon were measured by the Archimedes method and polarized light microscopy, respectively. The effects of deposition temperature and heater configuration on the densification behav-ior of the composites were investigated. Results showed that C/C composites with a density of 1. 70-1. 73 g/cm3 were produced after 30-35 h densification. The deposition front thickness and initial deposition rate of the pyrocarbon increased with deposition temperature from 900-1 000 ℃ to 1 100-1 200 ℃. However, the difficulty of precursor transfer increased at higher deposition temperatures due to a more rapid densification at the preform edge, leading to a density decrease of the composites from 1. 72-1. 73 g/cm3 at 900-1 000℃and 1 000-1100 ℃ to 1. 70 g/cm3 at 1 100-1 200℃ if upper heater was not used. Moreover, the densification uniformity of the com-posites decreased, and their density gradients along both the axial and radial directions were larger than 0. 04 g/cm3 . When the upper heater with many holes along its axial direction was used, the thickness of the deposition front decreased whereas the mass transfer effi-ciency of precursor into the preform increased, which had the advantage of improving the density and uniformity of the composites for the higher deposition temperature of 1 100-1 200 ℃.