冶金自动化
冶金自動化
야금자동화
METALLURGICAL INDUSTRY AUTOMATION
2014年
1期
21-27
,共7页
铝电解%出铝量%氟化铝添加量%广义动态模糊神经网络
鋁電解%齣鋁量%氟化鋁添加量%廣義動態模糊神經網絡
려전해%출려량%불화려첨가량%엄의동태모호신경망락
aluminum electrolysis%aluminum tapping volume%AlF3 addition%general dynamic fuzzy neural network
铝电解过程中,每日出铝量、氟化铝添加量的决策对铝电解过程温度和过热度的准确控制非常重要,是影响铝电解技术经济指标的重要因素之一。本文基于广义动态模糊神经网络算法( GD-FNN),构造了铝电解预测系统,在给定铝电解槽所需温度之后,对铝电解中的出铝量和氟化铝添加量进行预测。此算法通过对高电流效率、低能耗的电解槽的运行规律进行自适应分析,训练出对应的决策规则,运用到效率低的电解槽,可以实现铝电解槽温度和过热度控制,提高铝电解电流效率。通过对某铝电解厂实际数据进行仿真实验,证明了该算法在铝电解控制中的有效性。
鋁電解過程中,每日齣鋁量、氟化鋁添加量的決策對鋁電解過程溫度和過熱度的準確控製非常重要,是影響鋁電解技術經濟指標的重要因素之一。本文基于廣義動態模糊神經網絡算法( GD-FNN),構造瞭鋁電解預測繫統,在給定鋁電解槽所需溫度之後,對鋁電解中的齣鋁量和氟化鋁添加量進行預測。此算法通過對高電流效率、低能耗的電解槽的運行規律進行自適應分析,訓練齣對應的決策規則,運用到效率低的電解槽,可以實現鋁電解槽溫度和過熱度控製,提高鋁電解電流效率。通過對某鋁電解廠實際數據進行倣真實驗,證明瞭該算法在鋁電解控製中的有效性。
려전해과정중,매일출려량、불화려첨가량적결책대려전해과정온도화과열도적준학공제비상중요,시영향려전해기술경제지표적중요인소지일。본문기우엄의동태모호신경망락산법( GD-FNN),구조료려전해예측계통,재급정려전해조소수온도지후,대려전해중적출려량화불화려첨가량진행예측。차산법통과대고전류효솔、저능모적전해조적운행규률진행자괄응분석,훈련출대응적결책규칙,운용도효솔저적전해조,가이실현려전해조온도화과열도공제,제고려전해전류효솔。통과대모려전해엄실제수거진행방진실험,증명료해산법재려전해공제중적유효성。
In the aluminum electrolysis process, the determination of aluminum tapping volume and AlF3 addition is very important to control the temperature of aluminum production cells and the over-heated temperature precisely. Based on general dynamic fuzzy neural network,an aluminum electrolytic prediction system is constructed to forecast the aluminum tapping volume and AlF3 addition at a given temperature of aluminum production cells that we need. Through the adaptive analysis of operation law of high current efficiency and low-energy electrolytic cell,the corresponding rules are trained and ap-plied to the inefficient electrolytic cell algorithmically, so as to control the temperature of aluminum production cells and the overheated temperature and improve the efficiency of aluminum electrolysis. The simulation shows the algorithm validity in the industrial control systems.