通信学报
通信學報
통신학보
JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS
2014年
1期
140-147
,共8页
朱翠涛%杨凡%汪汉新%李中捷
硃翠濤%楊凡%汪漢新%李中捷
주취도%양범%왕한신%리중첩
认知无线电%频谱感知%因子图%变分稀疏贝叶斯学习
認知無線電%頻譜感知%因子圖%變分稀疏貝葉斯學習
인지무선전%빈보감지%인자도%변분희소패협사학습
cognitive radio%spectrum sensing%factor graph%variational sparse Bayesian learning
提出了一种基于因子图的分布式变分稀疏贝叶斯压缩感知算法。该算法利用因子图和变分方法将全局感知问题分解为简单的局部问题,通过认知用户邻居间的置信传播实现“软融合”,使每个认知用户能够获得全局最优估计。且充分利用邻居间传递的信息所具有的时间和空间二维相关性,提高认知用户在低信噪比下的感知性能。同时,算法在迭代过程中自适应地删除不收敛的超参数及对应的基函数,降低通信负载。实验结果表明:该方法在低采样率和低信噪比下有较好的感知性能。
提齣瞭一種基于因子圖的分佈式變分稀疏貝葉斯壓縮感知算法。該算法利用因子圖和變分方法將全跼感知問題分解為簡單的跼部問題,通過認知用戶鄰居間的置信傳播實現“軟融閤”,使每箇認知用戶能夠穫得全跼最優估計。且充分利用鄰居間傳遞的信息所具有的時間和空間二維相關性,提高認知用戶在低信譟比下的感知性能。同時,算法在迭代過程中自適應地刪除不收斂的超參數及對應的基函數,降低通信負載。實驗結果錶明:該方法在低採樣率和低信譟比下有較好的感知性能。
제출료일충기우인자도적분포식변분희소패협사압축감지산법。해산법이용인자도화변분방법장전국감지문제분해위간단적국부문제,통과인지용호린거간적치신전파실현“연융합”,사매개인지용호능구획득전국최우고계。차충분이용린거간전체적신식소구유적시간화공간이유상관성,제고인지용호재저신조비하적감지성능。동시,산법재질대과정중자괄응지산제불수렴적초삼수급대응적기함수,강저통신부재。실험결과표명:해방법재저채양솔화저신조비하유교호적감지성능。
A distributed variational sparse Bayesian compressed spectrum sensing algorithm based on factor graph was proposed, which decomposed the global spectrum sensing problem into local problem based on factor and variation. Be-lief propagation was used for the statistical inference of the spectrum occupancy, to implement the “soft fusion”. The temporal and spatial correlation information providing two-dimensional redundancies was exchanged among cooperative cognitive users to improve the detection performance under low SNR. Meanwhile, the algorithm prunes the divergence of hyper-parameters and the corresponding basis functions for reducing the load of communication. The simulation results show that this method can effectively achieve performance of spectrum sensing under a low sampling rate and the low SNR.