南京信息工程大学学报
南京信息工程大學學報
남경신식공정대학학보
JOURNAL OF NANJING UNIVERSITY OF INFORMATION SCIENCE & TECHNOLOGY
2014年
1期
1-16
,共16页
参数估计%递推辨识%梯度搜索%最小二乘%辅助模型辨识思想%多新息辨识理论%递阶辨识原理%耦合辨识概念%多元系统
參數估計%遞推辨識%梯度搜索%最小二乘%輔助模型辨識思想%多新息辨識理論%遞階辨識原理%耦閤辨識概唸%多元繫統
삼수고계%체추변식%제도수색%최소이승%보조모형변식사상%다신식변식이론%체계변식원리%우합변식개념%다원계통
parameter estimation%recursive identification%gradient search%least squares%auxiliary model identifica-tion idea%multi-innovation identification theory%hierarchical identification principle%coupling identification concept%multivariate system
针对多元线性回归系统,利用耦合辨识概念和多新息辨识理论,讨论了多元随机梯度算法、多元多新息随机梯度算法,以及变递推间隔多元多新息梯度算法,进一步分解多元系统为一些子系统,给出了耦合子系统随机梯度算法、耦合随机梯度算法、耦合子系统多新息随机梯度算法、耦合多新息随机梯度算法,并将这些方法推广到多元伪线性滑动平均系统和多元伪线性自回归滑动平均系统。文中给出了几个典型耦合随机梯度算法、耦合多新息随机梯度算法的计算步骤和示意图。
針對多元線性迴歸繫統,利用耦閤辨識概唸和多新息辨識理論,討論瞭多元隨機梯度算法、多元多新息隨機梯度算法,以及變遞推間隔多元多新息梯度算法,進一步分解多元繫統為一些子繫統,給齣瞭耦閤子繫統隨機梯度算法、耦閤隨機梯度算法、耦閤子繫統多新息隨機梯度算法、耦閤多新息隨機梯度算法,併將這些方法推廣到多元偽線性滑動平均繫統和多元偽線性自迴歸滑動平均繫統。文中給齣瞭幾箇典型耦閤隨機梯度算法、耦閤多新息隨機梯度算法的計算步驟和示意圖。
침대다원선성회귀계통,이용우합변식개념화다신식변식이론,토론료다원수궤제도산법、다원다신식수궤제도산법,이급변체추간격다원다신식제도산법,진일보분해다원계통위일사자계통,급출료우합자계통수궤제도산법、우합수궤제도산법、우합자계통다신식수궤제도산법、우합다신식수궤제도산법,병장저사방법추엄도다원위선성활동평균계통화다원위선성자회귀활동평균계통。문중급출료궤개전형우합수궤제도산법、우합다신식수궤제도산법적계산보취화시의도。
For multivariate linear regression systems,using the coupling identification concept and the multi-inno-vation identification theory,this paper discusses a multivariate stochastic gradient algorithm,a multivariate multi-in-novation stochastic gradient algorithm,and an interval-varying multivariate multi-innovation gradient algorithm,de-composes a multivariate system into several subsystems,and presents a coupled subsystem stochastic gradient algo-rithm,a coupled stochastic gradient algorithm,a coupled subsystems multi-innovation stochastic gradient algorithm and a coupled multi-innovation stochastic gradient algorithm.These methods are extended to multivariate pseudo-lin-ear moving average systems and multivariate pseudo-linear autoregressive moving average systems.Finally,this paper gives the steps and diagrams for computing the parameter estimates using several typical coupled stochastic gradient algorithms and coupled multi-innovation stochastic gradient algorithms.