计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
1期
191-193,270
,共4页
人脸识别%典型相关分析%核主成分分析%子模型%特征融合
人臉識彆%典型相關分析%覈主成分分析%子模型%特徵融閤
인검식별%전형상관분석%핵주성분분석%자모형%특정융합
Face recognition%Canonical correlation analysis%Kernel principal component analysis%Sub-model%Features fusion
人脸识别具有小样本、高维等特性。典型相关分析算法(CCA)无法准确提取人脸识别特征,不能准确刻画人脸图像的局部变化,导致人脸识别率低。为提高人脸识别率,提出一种核主成分分析与典型相关分析相融合的人脸识别算法(KPCA-CCA)。首先将人脸图像划分多个子模块,然后提取局部特征,同时采用KPCA提取全局特征,并采用CCA将两种特征进行融合,降低特征向量的维数,最后采用子模式进行人脸识别,以投票方式确定人脸的类别。采用AR与Yale数据集对KPCA-CC性能进行测试,仿真结果表明,相对于对比模型,KPCA-CCA提高了人脸识别的识别率。
人臉識彆具有小樣本、高維等特性。典型相關分析算法(CCA)無法準確提取人臉識彆特徵,不能準確刻畫人臉圖像的跼部變化,導緻人臉識彆率低。為提高人臉識彆率,提齣一種覈主成分分析與典型相關分析相融閤的人臉識彆算法(KPCA-CCA)。首先將人臉圖像劃分多箇子模塊,然後提取跼部特徵,同時採用KPCA提取全跼特徵,併採用CCA將兩種特徵進行融閤,降低特徵嚮量的維數,最後採用子模式進行人臉識彆,以投票方式確定人臉的類彆。採用AR與Yale數據集對KPCA-CC性能進行測試,倣真結果錶明,相對于對比模型,KPCA-CCA提高瞭人臉識彆的識彆率。
인검식별구유소양본、고유등특성。전형상관분석산법(CCA)무법준학제취인검식별특정,불능준학각화인검도상적국부변화,도치인검식별솔저。위제고인검식별솔,제출일충핵주성분분석여전형상관분석상융합적인검식별산법(KPCA-CCA)。수선장인검도상화분다개자모괴,연후제취국부특정,동시채용KPCA제취전국특정,병채용CCA장량충특정진행융합,강저특정향량적유수,최후채용자모식진행인검식별,이투표방식학정인검적유별。채용AR여Yale수거집대KPCA-CC성능진행측시,방진결과표명,상대우대비모형,KPCA-CCA제고료인검식별적식별솔。
Face recognition has the features of small sample and high-dimensionality.Canonical correlation analysis (CCA)can’t accu-rately extract the features of face recognition,nor accurately depicts the local variations of face image as well,which lead to low face recogni-tion rate.In order to improve the face recognition rate,in this paper we propose a novel face recognition algorithm which fuses kernel princi-pal component analysis and canonical correlation analysis (KPCA-CCA).First,it divides the face image into multiple sub-models and ex-tracts local features,meanwhile the KPCA is employed to extract global features,and then these two kinds of features are fused by CCA to re-duce the dimensionality of eigenvectors,finally the sub-models are used for face recognition,and the face type is determined by voting.The performance of KPCA-CCA has been tested by AR and Yale datasets,simulation results show that it raises face recognition rate with respect to the reference model.