计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2014年
1期
158-161
,共4页
人脸识别%主成分分析%BP神经网络%附加动量%弹性梯度下降法
人臉識彆%主成分分析%BP神經網絡%附加動量%彈性梯度下降法
인검식별%주성분분석%BP신경망락%부가동량%탄성제도하강법
Face recognition%Principal component analysis%BP neural network%Additional momentum%Elastic gradient descent method
人脸识别作为模式识别领域的热点研究问题受到了广泛的关注。传统BP算法虽然具有自学习、自适应以及强大的非线性映射能力并且在人脸图像识别准确率上占有很大的优势,但算法具有收敛缓慢、训练过程振荡、易陷入局部极小点等缺点。针对传统BP算法的不足提出一种基于改进BP神经网络的PCA人脸识别算法,该算法采用PCA算法提取图像的主要特征,并结合一种新的权值调整方法改进BP算法进行图像分类识别。仿真实验表明,通过使用该算法对ORL人脸数据库的图像进行识别,其结果比传统算法具有更快的收敛速度和更高的识别率。
人臉識彆作為模式識彆領域的熱點研究問題受到瞭廣汎的關註。傳統BP算法雖然具有自學習、自適應以及彊大的非線性映射能力併且在人臉圖像識彆準確率上佔有很大的優勢,但算法具有收斂緩慢、訓練過程振盪、易陷入跼部極小點等缺點。針對傳統BP算法的不足提齣一種基于改進BP神經網絡的PCA人臉識彆算法,該算法採用PCA算法提取圖像的主要特徵,併結閤一種新的權值調整方法改進BP算法進行圖像分類識彆。倣真實驗錶明,通過使用該算法對ORL人臉數據庫的圖像進行識彆,其結果比傳統算法具有更快的收斂速度和更高的識彆率。
인검식별작위모식식별영역적열점연구문제수도료엄범적관주。전통BP산법수연구유자학습、자괄응이급강대적비선성영사능력병차재인검도상식별준학솔상점유흔대적우세,단산법구유수렴완만、훈련과정진탕、역함입국부겁소점등결점。침대전통BP산법적불족제출일충기우개진BP신경망락적PCA인검식별산법,해산법채용PCA산법제취도상적주요특정,병결합일충신적권치조정방법개진BP산법진행도상분류식별。방진실험표명,통과사용해산법대ORL인검수거고적도상진행식별,기결과비전통산법구유경쾌적수렴속도화경고적식별솔。
Face recognition,as a focus of the research in pattern recognition field,has gained increasing attention.Traditional BP algorithm has a strong ability in self-learning,self-adaptivity and nonlinear mapping.Moreover,it has a significant predominance in human face recognition accuracy.However,the algorithm also has shortages including slow convergence,training process oscillation and easy to fall into local minima.In light of these deficiencies of traditional BP neural network,we propose a PCA face recognition algorithm which is based on improved BP neural network.The algorithm uses PCA algorithm to extract principal features of face image and uses a new weight adjustment method to improve the BP algorithm for image classification and recognition.Simulation experimental results show that faster convergence speed and higher recognition rate are achieved when using the improved algorithm to identify the images in ORL face database than the traditional algorithm.