计算机系统应用
計算機繫統應用
계산궤계통응용
APPLICATIONS OF THE COMPUTER SYSTEMS
2014年
1期
144-148
,共5页
张灿淋%姚明海%童小龙%张何栋
張燦淋%姚明海%童小龍%張何棟
장찬림%요명해%동소룡%장하동
增量学习%SVM%KKT条件%错误驱动
增量學習%SVM%KKT條件%錯誤驅動
증량학습%SVM%KKT조건%착오구동
incremental learning%SVM%KKT condition%error-driven
分析了SVM增量学习过程中,样本SV集跟非SV集的转化,考虑到初始非SV集和新增样本对分类信息的影响,改进了原有KKT条件,并结合改进了的错误驱动策略,提出了新的基于KKT条件下的错误驱动增量学习算法,在不影响处理速度的前提下,尽可能多的保留原始样本中的有用信息,剔除新增样本中的无用信息,提高分类器精度,最后通过实验表明该算法在优化分类器效果,提高分类器性能方面上有良好的作用。
分析瞭SVM增量學習過程中,樣本SV集跟非SV集的轉化,攷慮到初始非SV集和新增樣本對分類信息的影響,改進瞭原有KKT條件,併結閤改進瞭的錯誤驅動策略,提齣瞭新的基于KKT條件下的錯誤驅動增量學習算法,在不影響處理速度的前提下,儘可能多的保留原始樣本中的有用信息,剔除新增樣本中的無用信息,提高分類器精度,最後通過實驗錶明該算法在優化分類器效果,提高分類器性能方麵上有良好的作用。
분석료SVM증량학습과정중,양본SV집근비SV집적전화,고필도초시비SV집화신증양본대분류신식적영향,개진료원유KKT조건,병결합개진료적착오구동책략,제출료신적기우KKT조건하적착오구동증량학습산법,재불영향처리속도적전제하,진가능다적보류원시양본중적유용신식,척제신증양본중적무용신식,제고분류기정도,최후통과실험표명해산법재우화분류기효과,제고분류기성능방면상유량호적작용。
The transformation between the SV set and non-SV set is analyzed during the process of incremental SVM learning. Considering the initial non-SV set and new samples which will influence the accuracy of classification, it improves the KKT rule and error-driven rule. With these rules the new error-driven incremental SVM learning algorithm based on KKT conditions is proposed. With this algorithm, the useful information of original sample can be preserved as much as possible, the useless information of new samples can be removed accurately without affecting the processing speed. Experimental results show that this new algorithm has a good effect on both optimizing classifier and improving classification performance.