红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
1期
166-172
,共7页
李宏壮%张景旭%张振铎%王槐%王鸣浩
李宏壯%張景旭%張振鐸%王槐%王鳴浩
리굉장%장경욱%장진탁%왕괴%왕명호
主动光学%面形校正%波像差校正%薄镜面
主動光學%麵形校正%波像差校正%薄鏡麵
주동광학%면형교정%파상차교정%박경면
active optics%surface error correction%wavefront error correction%thin mirror
对620 mm口径薄镜面主动光学望远镜进行了主镜面形校正和系统波像差校正实验。主镜支撑结构由轴向36个主动支撑点和侧向6个被动支撑点组成,其中轴向33个支撑点用于主动校正,3个作为虚拟硬点用于控制主镜空间位置;利用研制的Shack-Hartmann(S-H)传感器作为检测设备,采用最小二乘法计算校正力。实验中在对系统校正能力测试的基础上,选择了中低频Zernike像差参与校正。通过将S-H传感器固定在主镜曲率中心位置,完成了主镜在不同俯仰角下的面形校正,将初始状态约0.6λRMS校正到λ/12~/15 RMS。而后通过平行光管发出的星点目标,对望远镜系统进行了波像差校正,使系统波像差从初始约0.65λRMS校正到约0.2λRMS,分辨率由18 lp/mm提高到45 lp/mm。
對620 mm口徑薄鏡麵主動光學望遠鏡進行瞭主鏡麵形校正和繫統波像差校正實驗。主鏡支撐結構由軸嚮36箇主動支撐點和側嚮6箇被動支撐點組成,其中軸嚮33箇支撐點用于主動校正,3箇作為虛擬硬點用于控製主鏡空間位置;利用研製的Shack-Hartmann(S-H)傳感器作為檢測設備,採用最小二乘法計算校正力。實驗中在對繫統校正能力測試的基礎上,選擇瞭中低頻Zernike像差參與校正。通過將S-H傳感器固定在主鏡麯率中心位置,完成瞭主鏡在不同俯仰角下的麵形校正,將初始狀態約0.6λRMS校正到λ/12~/15 RMS。而後通過平行光管髮齣的星點目標,對望遠鏡繫統進行瞭波像差校正,使繫統波像差從初始約0.65λRMS校正到約0.2λRMS,分辨率由18 lp/mm提高到45 lp/mm。
대620 mm구경박경면주동광학망원경진행료주경면형교정화계통파상차교정실험。주경지탱결구유축향36개주동지탱점화측향6개피동지탱점조성,기중축향33개지탱점용우주동교정,3개작위허의경점용우공제주경공간위치;이용연제적Shack-Hartmann(S-H)전감기작위검측설비,채용최소이승법계산교정력。실험중재대계통교정능력측시적기출상,선택료중저빈Zernike상차삼여교정。통과장S-H전감기고정재주경곡솔중심위치,완성료주경재불동부앙각하적면형교정,장초시상태약0.6λRMS교정도λ/12~/15 RMS。이후통과평행광관발출적성점목표,대망원경계통진행료파상차교정,사계통파상차종초시약0.65λRMS교정도약0.2λRMS,분변솔유18 lp/mm제고도45 lp/mm。
For 620 mm diameter active optics telescope, surface error correction for primary mirror and system wavefront aberration correction experiment were carried out respectively. The support system of primary mirror consisted of 36 axial active supports and 6 lateral passive supports, in which 33 axial supports were used for active correction, and 3 were used as dummy hard points for controlling the position of primary mirror. The Shack-Hartmann wavefront sensor was used as testing equipment and the least square method was used to calculate the active corrective forces. In the experiment, low frequency Zernike terms were selected for correction through analyzing the correction ability of the system. Through fixing the S-H sensor at the curvature center of primary, the mirror surface error correction experiment was carried out at different elevation, and around 0.6λRMS surface error of the initial state can be corrected to λ/12-λ/15 RMS. Then the wavefront error of the telescope system was corrected using the star object of collimator, around 0.65λRMS of the initial state was corrected to 0.2λRMS, and the resolution is improved from 18 lp/mm to 45 lp/mm correspondingly.