农业工程学报
農業工程學報
농업공정학보
2014年
5期
204-210
,共7页
土地利用%土壤%数学模型%耕地地力%评价方法%评价指标%权重系数
土地利用%土壤%數學模型%耕地地力%評價方法%評價指標%權重繫數
토지이용%토양%수학모형%경지지력%평개방법%평개지표%권중계수
land use%soils%mathematical model%cultivated land productivity%assessment method%assessment indicator%weight coefficient
耕地地力的定量评价和分等定级是测土配方施肥的重要内容,也是实现农田地力定向培育和精准农作的基础。该文从地力评价指标筛选、评价单元划分与赋值、评价指标的权重确定等方面介绍了国内外耕地地力评价的主要流程和重要研究进展,对中国农业部推荐方法(特尔斐法-层次分析法)、神经网络法、支持向量机和决策树法等评价方法的原理及其优劣进行了较系统的述评。进一步地,还对该领域目前存在的指标体系通用性、评价结果可比性、数据缺失等问题及可能的解决方案作了探讨。在未来的耕地地力评价工作中,应将传统的层次分析法与近年兴起的分类与回归树等数据挖掘新技术相结合,建立起更为客观、全面的地力定量评价模型,为中国精准农业生产提供方法学参考。
耕地地力的定量評價和分等定級是測土配方施肥的重要內容,也是實現農田地力定嚮培育和精準農作的基礎。該文從地力評價指標篩選、評價單元劃分與賦值、評價指標的權重確定等方麵介紹瞭國內外耕地地力評價的主要流程和重要研究進展,對中國農業部推薦方法(特爾斐法-層次分析法)、神經網絡法、支持嚮量機和決策樹法等評價方法的原理及其優劣進行瞭較繫統的述評。進一步地,還對該領域目前存在的指標體繫通用性、評價結果可比性、數據缺失等問題及可能的解決方案作瞭探討。在未來的耕地地力評價工作中,應將傳統的層次分析法與近年興起的分類與迴歸樹等數據挖掘新技術相結閤,建立起更為客觀、全麵的地力定量評價模型,為中國精準農業生產提供方法學參攷。
경지지력적정량평개화분등정급시측토배방시비적중요내용,야시실현농전지력정향배육화정준농작적기출。해문종지력평개지표사선、평개단원화분여부치、평개지표적권중학정등방면개소료국내외경지지력평개적주요류정화중요연구진전,대중국농업부추천방법(특이비법-층차분석법)、신경망락법、지지향량궤화결책수법등평개방법적원리급기우렬진행료교계통적술평。진일보지,환대해영역목전존재적지표체계통용성、평개결과가비성、수거결실등문제급가능적해결방안작료탐토。재미래적경지지력평개공작중,응장전통적층차분석법여근년흥기적분류여회귀수등수거알굴신기술상결합,건립기경위객관、전면적지력정량평개모형,위중국정준농업생산제공방법학삼고。
Quantitative evaluation, classification and gradation of cultivated land productivity are important for implementing formula fertilization, guiding the oriented soil fertility cultivation and precision farming. In this paper, the definition and main processes of cultivated land productivity were introduced ranging from indexes selection, evaluation unit division and assignment, index weight determination and gradation. Different evaluation methods of land productivity using machine learning technique confirmed with good results were summarized such as China's ministry of agriculture recommended method, Delphi-analytical hierarchy process, soil productivity index, support vector machine, artificial neural network, and decision tree. Their use methods, advantages and disadvantages were analyzed. In general, these machine learning techniques are objective and can easily overcome Delphi’s subjective effect. Farmland soil fertility survey and quality evaluation are popular. However, some potential problems occurred, for example that evaluation index system is lack of universality, results of evaluation cannot be compared for different city, even county if the evaluation methods are different, and work is hard to be done in some remote mountainous areas where the economy and science fall far behind other regions. These problems were discussed and some possible solutions were proposed such as applying classification and regression trees in remote mountainous areas to enhance coefficient of utilization of data set based on mechanism for handling missing values. Finally, the paper analyzed if average annual yields used as target variables of these new machine learning techniques are feasible and reasonable. If the answer was yes, how to integrate these new techniques into traditional evaluation and classification methods of cultivated land productivity may become the possible direction for study. It hoped that this article would provide valuable information on methodology for evaluation, classification, and gradation of cultivated land productivity.