农业工程学报
農業工程學報
농업공정학보
2014年
4期
40-46
,共7页
高建民%陆岱鹏%刘昌鑑%李俊一
高建民%陸岱鵬%劉昌鑑%李俊一
고건민%륙대붕%류창감%리준일
喷头%喷雾%研制%有限元方法%超声雾化%雾滴%驱动电路
噴頭%噴霧%研製%有限元方法%超聲霧化%霧滴%驅動電路
분두%분무%연제%유한원방법%초성무화%무적%구동전로
nozzle%spraying%finite element methods%ultrasonic atomization%driving circuit%droplet
针对现有低频超声雾化喷头存在驱动电压高、工作效率低、电路和喷头发热严重以及体积较大等缺点,该文研制了一种工作频率为60kHz的微型指数振子超声雾化喷头及喷头的驱动电路。根据频率方程确定了喷头的基本尺寸,建立了喷头的有限单元模型,根据该模型进行了喷头的模态分析和谐响应分析,该喷头的谐振频率计算值为61550Hz,驱动电压为36V 时雾化面振幅计算值为8μm;应用阻抗分析仪 Pvc70A 和激光微位移传感器CD5-L25对该喷头样机的谐振频率和雾化面的振幅进行了测试,喷头谐振频率的测试值为59699 Hz,与设计频率的相差0.5%,与有限元模态计算的频率相差3.0%,驱动电压为36V时振幅的测试值为8.63μm,与有限元谐响应分析结果相差7.8%;应用Winner318B工业喷雾激光粒度分析仪对驱动电压分别为36和30 V喷头所产生的雾滴尺寸进行了测量,测量结果表明,电压对雾滴粒径分布没有显著影响,但是对最大雾化量影响较大;与28 kHz的超声雾化喷头相比,喷头的最大雾化量基本一致,体积和质量分别仅为28kHz超声雾化锥状喷头的5.54%和9.81%,并且其产生的雾滴更细。
針對現有低頻超聲霧化噴頭存在驅動電壓高、工作效率低、電路和噴頭髮熱嚴重以及體積較大等缺點,該文研製瞭一種工作頻率為60kHz的微型指數振子超聲霧化噴頭及噴頭的驅動電路。根據頻率方程確定瞭噴頭的基本呎吋,建立瞭噴頭的有限單元模型,根據該模型進行瞭噴頭的模態分析和諧響應分析,該噴頭的諧振頻率計算值為61550Hz,驅動電壓為36V 時霧化麵振幅計算值為8μm;應用阻抗分析儀 Pvc70A 和激光微位移傳感器CD5-L25對該噴頭樣機的諧振頻率和霧化麵的振幅進行瞭測試,噴頭諧振頻率的測試值為59699 Hz,與設計頻率的相差0.5%,與有限元模態計算的頻率相差3.0%,驅動電壓為36V時振幅的測試值為8.63μm,與有限元諧響應分析結果相差7.8%;應用Winner318B工業噴霧激光粒度分析儀對驅動電壓分彆為36和30 V噴頭所產生的霧滴呎吋進行瞭測量,測量結果錶明,電壓對霧滴粒徑分佈沒有顯著影響,但是對最大霧化量影響較大;與28 kHz的超聲霧化噴頭相比,噴頭的最大霧化量基本一緻,體積和質量分彆僅為28kHz超聲霧化錐狀噴頭的5.54%和9.81%,併且其產生的霧滴更細。
침대현유저빈초성무화분두존재구동전압고、공작효솔저、전로화분두발열엄중이급체적교대등결점,해문연제료일충공작빈솔위60kHz적미형지수진자초성무화분두급분두적구동전로。근거빈솔방정학정료분두적기본척촌,건립료분두적유한단원모형,근거해모형진행료분두적모태분석화해향응분석,해분두적해진빈솔계산치위61550Hz,구동전압위36V 시무화면진폭계산치위8μm;응용조항분석의 Pvc70A 화격광미위이전감기CD5-L25대해분두양궤적해진빈솔화무화면적진폭진행료측시,분두해진빈솔적측시치위59699 Hz,여설계빈솔적상차0.5%,여유한원모태계산적빈솔상차3.0%,구동전압위36V시진폭적측시치위8.63μm,여유한원해향응분석결과상차7.8%;응용Winner318B공업분무격광립도분석의대구동전압분별위36화30 V분두소산생적무적척촌진행료측량,측량결과표명,전압대무적립경분포몰유현저영향,단시대최대무화량영향교대;여28 kHz적초성무화분두상비,분두적최대무화량기본일치,체적화질량분별부위28kHz초성무화추상분두적5.54%화9.81%,병차기산생적무적경세。
Because the present low-frequency ultrasonic nozzles have such existing disadvantages as follows:high driving voltage,low working efficiency, serious heating of the driving circuit and nozzle,a large volume of low-frequency ultrasonic atomizers, a novel micro index ultrasonic nozzle whose working frequency was 60kHz was designed. According to the frequency equations, the basic sizes of the nozzle were determined. A finite element model of this nozzle was established too. Based on this nozzle’s finite element model, a modal analysis, and a harmonious response analysis of this nozzle were conducted. The analysis and calculation results showed that the resonance frequency of the nozzle was 61550Hz and the amplitude of the atomization surface was 8 microns with a 36V driving voltage. Based on ARM9.0, a driving circuit of this nozzle was developed. This nozzle’s working frequency as measured by Pvc70A and the atomization surface’s amplitude that was generated by 36V driving voltage and measured by CD5-L25 were 59699Hz and 8.63 microns respectively. Compared with this nozzle’s working frequency, this nozzle’s frequency errors of design and as calculated by FEM were less than 0.5%and 3.0%respectively. The actual amplitude of the atomizing surface of this nozzle was 7.8%less than the harmonic response amplitude calculated by the finite element model. Winner 318B was applied to measure the sizes of the droplets generated by this nozzle driven by 36V and 30V voltage respectively, and the results showed that the voltage had no significant influence on the distribution of the droplets’ sizes but on the maxim atomization quantity. Compared with a 28 kHz ultrasonic atomizer, the maxim atomization quantity of the atomizer was nearly identical, but the size and weight were 5.54%and 9.81%of the 28 kHz ultrasonic nozzle’s respectively. Droplets generated by this nozzle were finer than those generated by a 28 kHz ultrasonic nozzle.