空军预警学院学报
空軍預警學院學報
공군예경학원학보
Journal of Air Force Radar Academy
2014年
2期
119-122,126
,共5页
贝叶斯网络结构%遗传算法%模拟退火算法%自适应选择
貝葉斯網絡結構%遺傳算法%模擬退火算法%自適應選擇
패협사망락결구%유전산법%모의퇴화산법%자괄응선택
Bayesian network (BN) structure%genetic algorithm (GA)%simulated annealing algorithm (SAA)%adaptive selection
模拟退火算法(SAA)和遗传算法(GA)作为智能算法是结构学习的重要方法.针对两种典型算法存在收敛速度慢或过早陷入局部最优的问题,利用GA进行选择,通过SAA进行搜索并利用独立性测试信息自适应引导算法的进化,提出一种自适应遗传模拟退火算法(AGSAA),应用于贝叶斯网络(BN)结构学习.仿真结果表明AGSAA在学习的准确性和运行效率上均要优于SAA.
模擬退火算法(SAA)和遺傳算法(GA)作為智能算法是結構學習的重要方法.針對兩種典型算法存在收斂速度慢或過早陷入跼部最優的問題,利用GA進行選擇,通過SAA進行搜索併利用獨立性測試信息自適應引導算法的進化,提齣一種自適應遺傳模擬退火算法(AGSAA),應用于貝葉斯網絡(BN)結構學習.倣真結果錶明AGSAA在學習的準確性和運行效率上均要優于SAA.
모의퇴화산법(SAA)화유전산법(GA)작위지능산법시결구학습적중요방법.침대량충전형산법존재수렴속도만혹과조함입국부최우적문제,이용GA진행선택,통과SAA진행수색병이용독립성측시신식자괄응인도산법적진화,제출일충자괄응유전모의퇴화산법(AGSAA),응용우패협사망락(BN)결구학습.방진결과표명AGSAA재학습적준학성화운행효솔상균요우우SAA.
Simulated annealing algorithm (SAA) and genetic algorithm (GA) as the intelligence algorithm are the key method of structure learning. Aimed at the problem that the rate of convergence is slow and/or get involved into the local optimization untimely in those two typical algorithms, this paper puts forward an adaptive genetic simulated annealing algorithm (AGSAA), available for Bayesian networks (BN) structure learning, by using GA to select, using SAA to search and utilizing the independent test information to guide adaptively the evolution of algorithm. Simulation results show that AGSAA is superior to SAA in accuracy of learning and operational efficiency.