电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
2期
384-389
,共6页
周先存%黎明曦%陈振伟%徐英来%熊焰%李瑞霞
週先存%黎明晞%陳振偉%徐英來%熊燄%李瑞霞
주선존%려명희%진진위%서영래%웅염%리서하
无线传感器网络(WSN)%概率包标记(PPM)%溯源定位%分簇
無線傳感器網絡(WSN)%概率包標記(PPM)%溯源定位%分簇
무선전감기망락(WSN)%개솔포표기(PPM)%소원정위%분족
Wireless Sensor Network (WSN)%Probabilistic Packet Marking (PPM)%Trace back%Clustering
在利用概率包标记技术对无线传感器网络(WSN)恶意节点的追踪定位中,标记概率的确定是关键,直接影响到算法的收敛性,最弱链,节点负担等方面。该文分析并指出了基本概率包标记(BPPM)和等概率包标记(EPPM)方法的缺点,提出了一种层次式混合概率包标记(LMPPM)算法,可以克服以上算法的不足。该算法对无线传感器网络进行分簇,将每个簇看成一个大的“簇节点”,整个网络由一些大的“簇节点”构成,每个“簇节点”内部又包含一定数量的传感器节点。在“簇节点”之间采用等概率包标记法,在“簇节点”内部采用基本概率包标记法。实验分析表明,该算法在收敛性、最弱链方面优于BPPM算法,在节点计算与存储负担方面优于EPPM算法,是在资源约束条件下的一种整体优化。
在利用概率包標記技術對無線傳感器網絡(WSN)噁意節點的追蹤定位中,標記概率的確定是關鍵,直接影響到算法的收斂性,最弱鏈,節點負擔等方麵。該文分析併指齣瞭基本概率包標記(BPPM)和等概率包標記(EPPM)方法的缺點,提齣瞭一種層次式混閤概率包標記(LMPPM)算法,可以剋服以上算法的不足。該算法對無線傳感器網絡進行分簇,將每箇簇看成一箇大的“簇節點”,整箇網絡由一些大的“簇節點”構成,每箇“簇節點”內部又包含一定數量的傳感器節點。在“簇節點”之間採用等概率包標記法,在“簇節點”內部採用基本概率包標記法。實驗分析錶明,該算法在收斂性、最弱鏈方麵優于BPPM算法,在節點計算與存儲負擔方麵優于EPPM算法,是在資源約束條件下的一種整體優化。
재이용개솔포표기기술대무선전감기망락(WSN)악의절점적추종정위중,표기개솔적학정시관건,직접영향도산법적수렴성,최약련,절점부담등방면。해문분석병지출료기본개솔포표기(BPPM)화등개솔포표기(EPPM)방법적결점,제출료일충층차식혼합개솔포표기(LMPPM)산법,가이극복이상산법적불족。해산법대무선전감기망락진행분족,장매개족간성일개대적“족절점”,정개망락유일사대적“족절점”구성,매개“족절점”내부우포함일정수량적전감기절점。재“족절점”지간채용등개솔포표기법,재“족절점”내부채용기본개솔포표기법。실험분석표명,해산법재수렴성、최약련방면우우BPPM산법,재절점계산여존저부담방면우우EPPM산법,시재자원약속조건하적일충정체우화。
When the probabilistic packet marking technique for traceback and localization of malicious nodes in Wireless Sensor Networks (WSNs), the determination of marking probability is the key to influence the convergence, the weakest link, and the node burden of the algorithm. First, the disadvantages of the Basic Probabilistic Packet Marking (BPPM) algorithm and the Equal Probabilistic Packet Marking (EPPM) algorithm is analyzed. Then, a Layered Mixed Probabilistic Packet Marking (LMPPM) algorithm is proposed to overcome the defects of the above algorithms. In the proposed algorithm, WSN is clustered, and each cluster is considered as a big “cluster nodes”, therefore, the whole network consists of some big “cluster nodes”. Correspondingly, each“cluster nodes” internal contains a certain number of sensor nodes. The EPPM algorithm is used between the“cluster nodes”, and the BPPM algorithm is used in the“cluster nodes”. Experiments show that LMPPM is better than BPPM in convergence and the weakest link, and the node storage burden of the proposed algorithm is lower than that of the EPPM algorithm. The experiments confirm that the proposed algorithm is a kind of whole optimization under the conditions of resource constraint.