电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
2期
277-284
,共8页
杜春%邹焕新%孙即祥%周石琳%赵晶晶
杜春%鄒煥新%孫即祥%週石琳%趙晶晶
두춘%추환신%손즉상%주석림%조정정
模式识别%流形学习%降维%局部切空间排列(LTSA)%L1范数
模式識彆%流形學習%降維%跼部切空間排列(LTSA)%L1範數
모식식별%류형학습%강유%국부절공간배렬(LTSA)%L1범수
Pattern recognition%Manifold learning%Dimensionality reduction%Local Tangent Space Alignment (LTSA)%L1 norm
局部切空间排列是一种广受关注的流形学习算法,其具备实现简单、全局最优等特点,但其难以有效处理稀疏采样或非均匀分布的高维观测数据。针对这一问题,该文提出一种改进的局部切空间排列算法。首先,提出一种基于L1范数的局部切空间估计方法,由于同时考虑了距离和结构因素,该方法得到的切空间较主成分分析方法更为准确。其次,在坐标排列步骤为了减小排列误差,设计了一种基于流形结构的加权坐标排列方案,并给出了具体的求解方法。基于人造数据和真实数据的实验表明,该算法能够有效地处理稀疏和非均匀分布的流形数据。
跼部切空間排列是一種廣受關註的流形學習算法,其具備實現簡單、全跼最優等特點,但其難以有效處理稀疏採樣或非均勻分佈的高維觀測數據。針對這一問題,該文提齣一種改進的跼部切空間排列算法。首先,提齣一種基于L1範數的跼部切空間估計方法,由于同時攷慮瞭距離和結構因素,該方法得到的切空間較主成分分析方法更為準確。其次,在坐標排列步驟為瞭減小排列誤差,設計瞭一種基于流形結構的加權坐標排列方案,併給齣瞭具體的求解方法。基于人造數據和真實數據的實驗錶明,該算法能夠有效地處理稀疏和非均勻分佈的流形數據。
국부절공간배렬시일충엄수관주적류형학습산법,기구비실현간단、전국최우등특점,단기난이유효처리희소채양혹비균균분포적고유관측수거。침대저일문제,해문제출일충개진적국부절공간배렬산법。수선,제출일충기우L1범수적국부절공간고계방법,유우동시고필료거리화결구인소,해방법득도적절공간교주성분분석방법경위준학。기차,재좌표배렬보취위료감소배렬오차,설계료일충기우류형결구적가권좌표배렬방안,병급출료구체적구해방법。기우인조수거화진실수거적실험표명,해산법능구유효지처리희소화비균균분포적류형수거。
The Local Tangent Space Alignment (LTSA) is one of the popular manifold learning algorithms since it is straightforward to implementation and global optimal. However, LTSA may fail when high-dimensional observation data are sparse or non-uniformly distributed. To address this issue, a modified LTSA algorithm is presented. At first, a new L1 norm based method is presented to estimate the local tangent space of the data manifold. By considering both distance and structure factors, the proposed method is more accurate than traditional Principal Component Analysis (PCA) method. To reduce the bias of coordinate alignment, a weighted scheme based on manifold structure is then designed, and the detailed solving method is also presented. Experimental results on both synthetic and real datasets demonstrate the effectiveness of the proposed method when dealing with sparse and non-uniformly manifold data.