振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
3期
197-202
,共6页
王录雁%王强%张梅军%李焕良%赵玮
王錄雁%王彊%張梅軍%李煥良%趙瑋
왕록안%왕강%장매군%리환량%조위
经验模态分解%内禀模态能量%灰色综合关联度%滚动轴承%故障诊断
經驗模態分解%內稟模態能量%灰色綜閤關聯度%滾動軸承%故障診斷
경험모태분해%내품모태능량%회색종합관련도%곤동축승%고장진단
empirical mode decomposition (EMD)%intrinsic mode function (IMF)energy%gray synthetically relational grade%rolling bearing%fault diagnosis
经验模态分解(EMD)方法可使滚动轴承振动信号根据自身尺度自适应地分解为若干个内禀模态分量(IMF),滚动轴承发生故障会导致振动能量在各IMF分量上的分布发生变化,结合灰色关联模型建立IMF能量分布与轴承状态之间的对应关系,可实现轴承的状态识别。为改善传统灰关联分析在模式识别方面的缺陷,基于斜率相似的原理构造了能反映曲线形状信息的相似关联度模型,结合传统的接近关联度模型建立了能同时反映曲线位置与形状特性的灰色综合关联度诊断模型。算例结果表明,该方法能准确有效地实现滚动轴承的故障诊断。
經驗模態分解(EMD)方法可使滾動軸承振動信號根據自身呎度自適應地分解為若榦箇內稟模態分量(IMF),滾動軸承髮生故障會導緻振動能量在各IMF分量上的分佈髮生變化,結閤灰色關聯模型建立IMF能量分佈與軸承狀態之間的對應關繫,可實現軸承的狀態識彆。為改善傳統灰關聯分析在模式識彆方麵的缺陷,基于斜率相似的原理構造瞭能反映麯線形狀信息的相似關聯度模型,結閤傳統的接近關聯度模型建立瞭能同時反映麯線位置與形狀特性的灰色綜閤關聯度診斷模型。算例結果錶明,該方法能準確有效地實現滾動軸承的故障診斷。
경험모태분해(EMD)방법가사곤동축승진동신호근거자신척도자괄응지분해위약간개내품모태분량(IMF),곤동축승발생고장회도치진동능량재각IMF분량상적분포발생변화,결합회색관련모형건립IMF능량분포여축승상태지간적대응관계,가실현축승적상태식별。위개선전통회관련분석재모식식별방면적결함,기우사솔상사적원리구조료능반영곡선형상신식적상사관련도모형,결합전통적접근관련도모형건립료능동시반영곡선위치여형상특성적회색종합관련도진단모형。산례결과표명,해방법능준학유효지실현곤동축승적고장진단。
A rolling bearing vibration signal can be decomposed into a number of intrinsic mode functions (IMF) adaptively according to its own scale with the empirical mode decomposition (EMD)method.A rolling bearing failure will change distributions of IMF energy,and a bearing fault diagnosis can be realized by establishing the relationship between IMF energy distributions and bearing conditions based on the gray relational grade theory.Here,in order to improve the defects of the traditional gray analysis in pattern recognition,a gray similar relational grade model reflecting a curve's shape features was proposed based on the similarity of slope.Then,combined with the traditional approaching relativity model,a gray comprehensive relativity diagnosis model reflecting both a curve's position and its shape features was constructed.The simulation results showed that the new model can be used to recognize rolling bearing faults more effectively and accurately.