计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
4期
219-222
,共4页
孙浩%周力%邱意敏
孫浩%週力%邱意敏
손호%주력%구의민
独立分量分析%共轭梯度%最大信息熵%目标函数
獨立分量分析%共軛梯度%最大信息熵%目標函數
독립분량분석%공액제도%최대신식적%목표함수
independent component analysis%conjugate gradient%maximum information entropy%objective function
独立分量分析是一种将观测向量分解为若干个独立统计的分量的一种统计学方法。提出了一种新的独立分量分析方法,该方法在最大信息理论的基础上引入目标函数,并利用共轭梯度搜索算法替代自然梯度算法,推导出用于训练转换矩阵的学习方程。运用核密度函数估算方法自适应地估算学习方程中包含的评价函数项。仿真结果表明,提出的基于独立分量分析的共轭梯度算法在求解盲源分离问题中切实有效。
獨立分量分析是一種將觀測嚮量分解為若榦箇獨立統計的分量的一種統計學方法。提齣瞭一種新的獨立分量分析方法,該方法在最大信息理論的基礎上引入目標函數,併利用共軛梯度搜索算法替代自然梯度算法,推導齣用于訓練轉換矩陣的學習方程。運用覈密度函數估算方法自適應地估算學習方程中包含的評價函數項。倣真結果錶明,提齣的基于獨立分量分析的共軛梯度算法在求解盲源分離問題中切實有效。
독립분량분석시일충장관측향량분해위약간개독립통계적분량적일충통계학방법。제출료일충신적독립분량분석방법,해방법재최대신식이론적기출상인입목표함수,병이용공액제도수색산법체대자연제도산법,추도출용우훈련전환구진적학습방정。운용핵밀도함수고산방법자괄응지고산학습방정중포함적평개함수항。방진결과표명,제출적기우독립분량분석적공액제도산법재구해맹원분리문제중절실유효。
Independent component analysis is a statistical approach for representing an observed multi-dimensional sensor vector into several components which are as mutual independent as possible. In this paper, a new independent component analysis method is proposed. The presented method exploits the conjugate gradient searching algorithm rather than the nature gradient algorithm to derive the learning equations for training the transforming matrix. The objective function is obtained based on the theory of maximum information. In addition, the score functions included in the learning equation are estimated adaptively by a kernel density estimation method rather than replaced by choosing certain non-linear functions empirically. Several simulation results have shown the effective behavior of the proposed conjugate gradient based inde-pendent component analysis method with the application in the blind source separation problem.