中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2014年
5期
793-799
,共7页
王淑香%张伟%徐进良%牛志愿
王淑香%張偉%徐進良%牛誌願
왕숙향%장위%서진량%우지원
流动沸腾%螺旋管%CO2%换热系数%参数影响
流動沸騰%螺鏇管%CO2%換熱繫數%參數影響
류동비등%라선관%CO2%환열계수%삼수영향
flow boiling%helically coiled tube%carbon dioxide%heat transfer coefficient%parameters effect
在管内径9.0 mm、壁厚1.5 mm、螺旋管绕径283.0 mm的立式螺旋管内,对CO2流动沸腾换热特性进行实验研究。分析热流密度(q=1.4~48.0 kW/m2)、质量流速(G=54.0~400.0 kg/(m2?s))和运行压力(pin=5.6~7.0 MPa)对内壁温分布和换热特性的影响规律。结果表明:螺旋管内壁温周向分布不均匀,单相液体以及过热蒸汽区离心力的作用使内侧母线温度最高、外侧母线温度最低,在两相沸腾区蒸汽受到浮升力作用聚集在管上部而容易发生蒸干,因此上母线温度最高,温度最低值则由离心力和浮升力的相对大小共同决定。局部平均换热系数随热流密度以及进口压力的增加而显著增加,但增大质量流速对换热系数的影响不大,表明核态沸腾是 CO2在螺旋管内流动沸腾的主要传热模式而强制对流效应较弱;发现了随着热流密度增加所引起的核态沸腾强度变化以及干涸和再润湿使得换热系数随干度的变化可分成3个区域。并基于实验获得的2124个数据点拟合两相区沸腾换热关联式。
在管內徑9.0 mm、壁厚1.5 mm、螺鏇管繞徑283.0 mm的立式螺鏇管內,對CO2流動沸騰換熱特性進行實驗研究。分析熱流密度(q=1.4~48.0 kW/m2)、質量流速(G=54.0~400.0 kg/(m2?s))和運行壓力(pin=5.6~7.0 MPa)對內壁溫分佈和換熱特性的影響規律。結果錶明:螺鏇管內壁溫週嚮分佈不均勻,單相液體以及過熱蒸汽區離心力的作用使內側母線溫度最高、外側母線溫度最低,在兩相沸騰區蒸汽受到浮升力作用聚集在管上部而容易髮生蒸榦,因此上母線溫度最高,溫度最低值則由離心力和浮升力的相對大小共同決定。跼部平均換熱繫數隨熱流密度以及進口壓力的增加而顯著增加,但增大質量流速對換熱繫數的影響不大,錶明覈態沸騰是 CO2在螺鏇管內流動沸騰的主要傳熱模式而彊製對流效應較弱;髮現瞭隨著熱流密度增加所引起的覈態沸騰彊度變化以及榦涸和再潤濕使得換熱繫數隨榦度的變化可分成3箇區域。併基于實驗穫得的2124箇數據點擬閤兩相區沸騰換熱關聯式。
재관내경9.0 mm、벽후1.5 mm、라선관요경283.0 mm적입식라선관내,대CO2류동비등환열특성진행실험연구。분석열류밀도(q=1.4~48.0 kW/m2)、질량류속(G=54.0~400.0 kg/(m2?s))화운행압력(pin=5.6~7.0 MPa)대내벽온분포화환열특성적영향규률。결과표명:라선관내벽온주향분포불균균,단상액체이급과열증기구리심력적작용사내측모선온도최고、외측모선온도최저,재량상비등구증기수도부승력작용취집재관상부이용역발생증간,인차상모선온도최고,온도최저치칙유리심력화부승력적상대대소공동결정。국부평균환열계수수열류밀도이급진구압력적증가이현저증가,단증대질량류속대환열계수적영향불대,표명핵태비등시 CO2재라선관내류동비등적주요전열모식이강제대류효응교약;발현료수착열류밀도증가소인기적핵태비등강도변화이급간학화재윤습사득환열계수수간도적변화가분성3개구역。병기우실험획득적2124개수거점의합량상구비등환열관련식。
Within the ranges of pressure from 5.6 to 7.0 MPa, mass flux from 54.0 to 400.0 kg/(m2?s) and heat flux from 1.4 to 48.0 kW/m2, an experimental investigation was conducted on flow boiling heat transfer of CO2 through a helically coiled tube. The test helically coiled tube has an inner diameter of 9.0 mm, a wall thickness of 1.5 mm and a coil diameter of 283.0 mm. The effects of heat flux, mass flux and operating pressure on heat transfer coefficient and inner wall temperature distribution were discussed. The experimental results show that the inner wall temperature distributions along the circumference were non-uniform. For the sing-phase liquid flow and the superheated vapor flow, the inner wall temperature was highest in the inside and lowest in the outside, attributing to the centrifugal force. But in the two-phase area, the highest inner wall temperature appears at the top, which is because that the vapor phase gathers at the top due to the buoyancy force, tending to dry out. The location where the lowest temperature happened is determined by the combined effects of buoyancy force and centrifugal force. The local average heat transfer coefficient increases with increasing heat flux and inlet pressure, but the increment of mass flux has no effect on the heat transfer, suggesting that the nucleate boiling is the dominant mechanism while the forced convection effect is weak. The intensity of nucleate boiling changes with increasing heat flux and the variation of heat transfer coefficient with vapor quality can be divided into three different zones, which is induced by the alternative of wall dry-out and rewetting. A new correlation of local average heat transfer coefficient has been proposed based on the 2 124 data points.