光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
1期
65-72
,共8页
华亮%黄宇%丁立军%冯浩%顾菊平
華亮%黃宇%丁立軍%馮浩%顧菊平
화량%황우%정립군%풍호%고국평
Clifford代数%多模医学图像%三维配准%旋转算子
Clifford代數%多模醫學圖像%三維配準%鏇轉算子
Clifford대수%다모의학도상%삼유배준%선전산자
Clifford algebra%multimodality medical image%3D registration%rotation operator
3D/3D医学图像的配准在临床上具有重要的临床意义与医学价值,尤其在脑外科手术导航与病灶点定位上,病人的不同模态影像数据需要3D 配准,便于更加全面、精确的分析目标组织的医学特性。本文在研究经典配准方法的基础上,将经典配准方法内嵌于Clifford代数计算空间,在Clifford代数空间上构建配准过程计算的几何要素与配准操作的平移算子、几何旋转算子,浮动图像进行对应的算子运算,实现头颅部3D 多模医学图像配准。配准方法应用于国际上两个著名3D 医学数据库,实验结果表明:本文方法不仅继承经典配准算法的优点,而且配准精度高,几何意义直观,计算时间短。
3D/3D醫學圖像的配準在臨床上具有重要的臨床意義與醫學價值,尤其在腦外科手術導航與病竈點定位上,病人的不同模態影像數據需要3D 配準,便于更加全麵、精確的分析目標組織的醫學特性。本文在研究經典配準方法的基礎上,將經典配準方法內嵌于Clifford代數計算空間,在Clifford代數空間上構建配準過程計算的幾何要素與配準操作的平移算子、幾何鏇轉算子,浮動圖像進行對應的算子運算,實現頭顱部3D 多模醫學圖像配準。配準方法應用于國際上兩箇著名3D 醫學數據庫,實驗結果錶明:本文方法不僅繼承經典配準算法的優點,而且配準精度高,幾何意義直觀,計算時間短。
3D/3D의학도상적배준재림상상구유중요적림상의의여의학개치,우기재뇌외과수술도항여병조점정위상,병인적불동모태영상수거수요3D 배준,편우경가전면、정학적분석목표조직적의학특성。본문재연구경전배준방법적기출상,장경전배준방법내감우Clifford대수계산공간,재Clifford대수공간상구건배준과정계산적궤하요소여배준조작적평이산자、궤하선전산자,부동도상진행대응적산자운산,실현두로부3D 다모의학도상배준。배준방법응용우국제상량개저명3D 의학수거고,실험결과표명:본문방법불부계승경전배준산법적우점,이차배준정도고,궤하의의직관,계산시간단。
3D/3D medical image registration has important clinical significances and medical value, especially to the operation navigation and lesion location in brain surgery, the different modal 3D image data of patients need to be registered so that the medical characteristics of target tissue can be analyzed more completely and accurately. On the basis that classical registration methods are researched, the classical registration methods are embedded in Clifford algebra space, and the Geometric elements during registration calculating and the translation operator Geometric rotation operator during registration operation are built in Clifford algebra space. Then the floating image is operated with corresponding operator to achieve multimodality 3D medical image registration in head and skull. This registration method is applied to two famous 3D medical data base in the world. The experimental result indicates that this method not only inherits the advantage of classical registration methods, but also has high registration precision and intuitive geometric meaning, reducing the computing time.