大地构造与成矿学
大地構造與成礦學
대지구조여성광학
GETECTONICA ET METALLOGENIA
2014年
1期
12-26
,共15页
王茜%邵同宾%嵇少丞%道林克祯%近藤洋裕%龙长兴%孙圣思
王茜%邵同賓%嵇少丞%道林剋禎%近籐洋裕%龍長興%孫聖思
왕천%소동빈%혜소승%도림극정%근등양유%룡장흥%손골사
岫玉%叶蛇纹岩%地震波速%各向异性%剪切波分裂%板块俯冲带%青藏高原
岫玉%葉蛇紋巖%地震波速%各嚮異性%剪切波分裂%闆塊俯遲帶%青藏高原
수옥%협사문암%지진파속%각향이성%전절파분렬%판괴부충대%청장고원
Xiuyan jade%antigorite serpentinite%seismic wave velocities,anisotropy,shear wave splitting%subduction zones%Tibetan Plateau
为了研究水化岩石圈地幔和地幔楔的地震波速、各向异性及其与蛇纹石化程度及应变状态的关系,作者实验测量了8块叶蛇纹岩(采自辽宁的岫玉)标本在不同构造主方向(X, Y和Z)上的纵、横波速度随围压(0~600 MPa)的变化规律,详细研究了叶蛇纹石在塑性变形过程中通过(001)[010]位错滑移形成很强的晶格优选定向和高达21%的纵波速度各向异性与24%的剪切波分裂的特征,发现高温叶蛇纹岩与低温利蛇纹岩具有截然不同的地震波性质,例如,在围压600 MPa 下,高温叶蛇纹岩的 Vp=6.73 km/s、Vs=3.74 km/s, Vp/Vs=1.80,而低温利蛇纹岩的Vp=5.10 km/s、Vs=2.32 km/s, Vp/Vs=2.20。前人利用低温蛇纹石化橄榄岩的波速数据解释温度高于300℃的水化地幔楔和岩石圈地幔的地震波速不可避免地要低估研究区域内蛇纹石化的程度和水含量。本研究查明叶蛇纹岩的地震波性质及其各向异性特征亦为解释全球大洋板块俯冲带乃至青藏高原地区的剪切波分裂资料提供了新的思路。
為瞭研究水化巖石圈地幔和地幔楔的地震波速、各嚮異性及其與蛇紋石化程度及應變狀態的關繫,作者實驗測量瞭8塊葉蛇紋巖(採自遼寧的岫玉)標本在不同構造主方嚮(X, Y和Z)上的縱、橫波速度隨圍壓(0~600 MPa)的變化規律,詳細研究瞭葉蛇紋石在塑性變形過程中通過(001)[010]位錯滑移形成很彊的晶格優選定嚮和高達21%的縱波速度各嚮異性與24%的剪切波分裂的特徵,髮現高溫葉蛇紋巖與低溫利蛇紋巖具有截然不同的地震波性質,例如,在圍壓600 MPa 下,高溫葉蛇紋巖的 Vp=6.73 km/s、Vs=3.74 km/s, Vp/Vs=1.80,而低溫利蛇紋巖的Vp=5.10 km/s、Vs=2.32 km/s, Vp/Vs=2.20。前人利用低溫蛇紋石化橄欖巖的波速數據解釋溫度高于300℃的水化地幔楔和巖石圈地幔的地震波速不可避免地要低估研究區域內蛇紋石化的程度和水含量。本研究查明葉蛇紋巖的地震波性質及其各嚮異性特徵亦為解釋全毬大洋闆塊俯遲帶迺至青藏高原地區的剪切波分裂資料提供瞭新的思路。
위료연구수화암석권지만화지만설적지진파속、각향이성급기여사문석화정도급응변상태적관계,작자실험측량료8괴협사문암(채자료녕적수옥)표본재불동구조주방향(X, Y화Z)상적종、횡파속도수위압(0~600 MPa)적변화규률,상세연구료협사문석재소성변형과정중통과(001)[010]위착활이형성흔강적정격우선정향화고체21%적종파속도각향이성여24%적전절파분렬적특정,발현고온협사문암여저온리사문암구유절연불동적지진파성질,례여,재위압600 MPa 하,고온협사문암적 Vp=6.73 km/s、Vs=3.74 km/s, Vp/Vs=1.80,이저온리사문암적Vp=5.10 km/s、Vs=2.32 km/s, Vp/Vs=2.20。전인이용저온사문석화감람암적파속수거해석온도고우300℃적수화지만설화암석권지만적지진파속불가피면지요저고연구구역내사문석화적정도화수함량。본연구사명협사문암적지진파성질급기각향이성특정역위해석전구대양판괴부충대내지청장고원지구적전절파분렬자료제공료신적사로。
Antigorite is a main contributor to the formation of anomalously low seismic velocities and high anisotropy in subducting oceanic slabs, forearc mantle wedges and subcontinental mantle shear zones. Here we report new results on P- and S-wave velocities and anisotropy in 8 antigorite serpentinite samples (“Xiuyan jade” from Liaoning, China), measured at pressures up to 600 MPa. The results combined with previous experimental data allow us to distinguish the effects of low and high temperature (LT and HT) serpentinization on seismic velocities in the upper mantle. Serpentine contents in hydrous subducting slabs, mantle wedges and subcontinental mantle shear zones where temperature is>300 ℃should be at least twice as large as previous estimates based on LT serpentinization. The intrinsic Vp and Vs anisotropy of serpentinites, formed by plastic flow-induced lattice-preferred orientation (LPO) of antigorite, can be as high as 21%and 24%, respectively. Our results provide a new explanation for various anisotropy patterns observed in subduction systems worldwide. For a steeply subducting slab, antigorite is most likely deformed by nearly coaxial flattening and thus the trench-parallel seismic velocity is much faster than the trench-normal velocity. For a shallowly subducting slab, however, antigorite is most likely deformed by simple shear. Within the horizontal plane, the trench-normal velocity can be smaller, equal to, or larger than the trench-parallel velocity, depending on the dip angle of subduction. The geophysical characteristics of the Tibetan Plateau such as strong heterogeneities in seismic velocities and attenuation, shear wave splitting and electric conductivity can be equally explained by the presence of serpentinized shear zones within the subcontinental mantle.