智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2014年
3期
343-348
,共6页
主成分建模%SVDD%局部邻域聚类%光谱角余弦%高光谱异常检测
主成分建模%SVDD%跼部鄰域聚類%光譜角餘絃%高光譜異常檢測
주성분건모%SVDD%국부린역취류%광보각여현%고광보이상검측
principal component modeling%SVDD%local neighborhood clustering%spectral angle cosine%hyper-spectral anomaly detection
针对SVDD背景建模时混入异常点造成的检测率下降的问题,提出了基于主成分建模的SVDD方法并应用于高光谱图像异常检测。利用高光谱图像的光谱特征提取背景的主要成分,并分别对不同成分构建超球体,形成单种背景成分SVDD模型,最后利用综合决策函数对单个SVDD背景模型进行综合判断待检测像元,从而实现高光谱图像异常像元的检测。用仿真数据和真实数据对算法的性能进行验证,并将其与SVDD方法进行性能比较。结果表明,新算法在低虚警概率下较之SVDD模型有更高的检测概率,实验结果证明了算法的有效性。
針對SVDD揹景建模時混入異常點造成的檢測率下降的問題,提齣瞭基于主成分建模的SVDD方法併應用于高光譜圖像異常檢測。利用高光譜圖像的光譜特徵提取揹景的主要成分,併分彆對不同成分構建超毬體,形成單種揹景成分SVDD模型,最後利用綜閤決策函數對單箇SVDD揹景模型進行綜閤判斷待檢測像元,從而實現高光譜圖像異常像元的檢測。用倣真數據和真實數據對算法的性能進行驗證,併將其與SVDD方法進行性能比較。結果錶明,新算法在低虛警概率下較之SVDD模型有更高的檢測概率,實驗結果證明瞭算法的有效性。
침대SVDD배경건모시혼입이상점조성적검측솔하강적문제,제출료기우주성분건모적SVDD방법병응용우고광보도상이상검측。이용고광보도상적광보특정제취배경적주요성분,병분별대불동성분구건초구체,형성단충배경성분SVDD모형,최후이용종합결책함수대단개SVDD배경모형진행종합판단대검측상원,종이실현고광보도상이상상원적검측。용방진수거화진실수거대산법적성능진행험증,병장기여SVDD방법진행성능비교。결과표명,신산법재저허경개솔하교지SVDD모형유경고적검측개솔,실험결과증명료산법적유효성。
An SVDD algorithm based on the principal component modeling is presented for hyperspectral anomaly detection , in order to solve the problem of its low detection rate caused by mixing abnormal points in the process of modeling background .This method extracts the principal components of the background samples by using the hyper-spectral image’ s spectral signature , and then uses these different components to build different super spheres re-spectively , forms different single background component SVDD models by these super spheres , finally uses the inte-grated decision function to judge these SVDD background models to detect any anomalies .The performance of the algorithm is verified by simulated and real data .The results show that the proposed method can obtain a higher de-tection rate under low false rate than the algorithm based on SVDD , verifying the effectiveness of this proposed method.