国土资源遥感
國土資源遙感
국토자원요감
REMOTE SENSING FOR LAND & RESOURCES
2014年
4期
41-45
,共5页
周林滔%杨国范%赵福强%杜娟
週林滔%楊國範%趙福彊%杜娟
주림도%양국범%조복강%두연
EMD%分形%遥感%光谱特征%纹理特征%水体信息提取
EMD%分形%遙感%光譜特徵%紋理特徵%水體信息提取
EMD%분형%요감%광보특정%문리특정%수체신식제취
EMD%fractal%remote sensing%spectral characteristics%texture characteristics%water information ex-traction
提出一种基于经验模态分解( empirical mode decomposition,EMD)和分形理论相结合的遥感影像水体信息提取方法,该方法尝试结合影像的光谱特征和纹理特征以提高分类提取精度。对影像进行主成分分析得到有效信息量最大的第一主分量,计算每个像元的分维数得到分维图,同时将第一主分量EMD分解得到有效信息量较大的前3个经验模态函数,再结合原有的波段信息作为研究数据,利用极大似然法分类器提取水体信息。该方法充分结合了EMD在降噪和区分相似光谱特征中的优势和分形理论在纹理信息提取中的优势。研究表明,该方法可有效提高水体信息的提取精度,Kappa最高到0.9325。
提齣一種基于經驗模態分解( empirical mode decomposition,EMD)和分形理論相結閤的遙感影像水體信息提取方法,該方法嘗試結閤影像的光譜特徵和紋理特徵以提高分類提取精度。對影像進行主成分分析得到有效信息量最大的第一主分量,計算每箇像元的分維數得到分維圖,同時將第一主分量EMD分解得到有效信息量較大的前3箇經驗模態函數,再結閤原有的波段信息作為研究數據,利用極大似然法分類器提取水體信息。該方法充分結閤瞭EMD在降譟和區分相似光譜特徵中的優勢和分形理論在紋理信息提取中的優勢。研究錶明,該方法可有效提高水體信息的提取精度,Kappa最高到0.9325。
제출일충기우경험모태분해( empirical mode decomposition,EMD)화분형이론상결합적요감영상수체신식제취방법,해방법상시결합영상적광보특정화문리특정이제고분류제취정도。대영상진행주성분분석득도유효신식량최대적제일주분량,계산매개상원적분유수득도분유도,동시장제일주분량EMD분해득도유효신식량교대적전3개경험모태함수,재결합원유적파단신식작위연구수거,이용겁대사연법분류기제취수체신식。해방법충분결합료EMD재강조화구분상사광보특정중적우세화분형이론재문리신식제취중적우세。연구표명,해방법가유효제고수체신식적제취정도,Kappa최고도0.9325。
This paper presents a model for extracting water from remote sensing by using empirical mode decomposition( EMD) and fractal theory. The authors tried to improve accuracy with spectral information and texture characteristics. Principal component analysis was carried out on the image to obtain the biggest first principal component that contains effective information, then the fractal dimension of each pixel was calculated;at the same time, the first principal component was decomposed with the method of EMD to get the first three empirical mode functions, which, coupled with the original band information, served as the research data. With the method of maximum likelihood classifier, the waters were extracted. This method fully combines the advantages of EMD method in noise reduction and the advantage of fractal theory in texture information extraction. Experiment shows that this method can effectively improve the extraction accuracy, with the Kappa up to 0. 932 5.