交通信息与安全
交通信息與安全
교통신식여안전
JOURNAL OF TRANSPORT INFORMATION AND SAFETY
2014年
3期
27-31
,共5页
江周%张存保%许志达%严凤祥%丁国飞
江週%張存保%許誌達%嚴鳳祥%丁國飛
강주%장존보%허지체%엄봉상%정국비
多源数据%卡尔曼滤波%行程时间预测%城市道路网络%Vissim仿真
多源數據%卡爾曼濾波%行程時間預測%城市道路網絡%Vissim倣真
다원수거%잡이만려파%행정시간예측%성시도로망락%Vissim방진
multi-source data%Kalman filtering%travel time prediction%urban road network%Vissim simulation
针对基于单一数据源、利用卡尔曼滤波理论建立行程时间预测模型存在的不足,采用多源数据进行行程时间预测以提高精度。浮动车、固定检测器是常用的交通信息采集方法,在信息种类、数据精度等方面存在一定的互补性。因此,选择2种检测器的实时交通数据作为模型输入参数。利用卡尔曼滤波理论,以流量、占有率、行程时间作为输入量构成参数矩阵,建立城市道路网络行程时间预测模型。并通过Vissim仿真实验验证了模型的有效性。结果表明:基于多源数据的行程时间预测模型平均绝对相对误差为5.45%,其精度比单独采用固定检测器检测数据预测提高了14.4%,比单独采用浮动车数据预测提高了7.5%。
針對基于單一數據源、利用卡爾曼濾波理論建立行程時間預測模型存在的不足,採用多源數據進行行程時間預測以提高精度。浮動車、固定檢測器是常用的交通信息採集方法,在信息種類、數據精度等方麵存在一定的互補性。因此,選擇2種檢測器的實時交通數據作為模型輸入參數。利用卡爾曼濾波理論,以流量、佔有率、行程時間作為輸入量構成參數矩陣,建立城市道路網絡行程時間預測模型。併通過Vissim倣真實驗驗證瞭模型的有效性。結果錶明:基于多源數據的行程時間預測模型平均絕對相對誤差為5.45%,其精度比單獨採用固定檢測器檢測數據預測提高瞭14.4%,比單獨採用浮動車數據預測提高瞭7.5%。
침대기우단일수거원、이용잡이만려파이론건립행정시간예측모형존재적불족,채용다원수거진행행정시간예측이제고정도。부동차、고정검측기시상용적교통신식채집방법,재신식충류、수거정도등방면존재일정적호보성。인차,선택2충검측기적실시교통수거작위모형수입삼수。이용잡이만려파이론,이류량、점유솔、행정시간작위수입량구성삼수구진,건립성시도로망락행정시간예측모형。병통과Vissim방진실험험증료모형적유효성。결과표명:기우다원수거적행정시간예측모형평균절대상대오차위5.45%,기정도비단독채용고정검측기검측수거예측제고료14.4%,비단독채용부동차수거예측제고료7.5%。
In view of the deficiencies of traditional travel time prediction models developed based on Kalman filtering technique and single data source ,the multi-source data are used to improve such models and the prediction accuracy of travel time .Floating cars and loop detectors are common ways for collecting travel time ,and the two are complementary to each other in many ways .Therefore ,the real-time traffic data from the two sources are used as the inputs of the pre-diction model .Through Kalman filtering ,flow ,occupancy and travel time are used as inputs of the proposed travel time prediction model .Finally ,the model is verified through a simulation from Vissim .The simulation results show that the average absolute relative error of the estimated travel time based on the model developed based on the multi-source data is 5 .45% ,which is 14 .4% lower than those estimated based on the loop detector data only and 7 .5% lower than those esti-mated based on the floating car data alone .