红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
5期
1660-1666
,共7页
李庆辉%李艾华%苏延召%马治明
李慶輝%李艾華%囌延召%馬治明
리경휘%리애화%소연소%마치명
火焰检测%混合高斯模型%模糊C均值聚类%支持向量机
火燄檢測%混閤高斯模型%模糊C均值聚類%支持嚮量機
화염검측%혼합고사모형%모호C균치취류%지지향량궤
fire detection%Gaussian mixture model%FCM clustering%SVM
针对传统视频型火焰检测算法误报率高、局限性强等问题,提出一种四步火焰检测算法。首先利用一种自适应混合高斯模型(GMM)检测视频序列中的运动目标;然后采用模糊C均值(FCM)聚类算法分割疑似火焰区域与非火区域;再提取疑似火焰区域的面积变化、表面不均度等时空特征参数;最后将这些特征参数输入训练好的支持向量机( SVM )分类器以识别火焰区域。实验结果表明,算法不但在提高了检测率的同时降低了误检率,而且适用范围广,是一种有效的火焰检测算法。
針對傳統視頻型火燄檢測算法誤報率高、跼限性彊等問題,提齣一種四步火燄檢測算法。首先利用一種自適應混閤高斯模型(GMM)檢測視頻序列中的運動目標;然後採用模糊C均值(FCM)聚類算法分割疑似火燄區域與非火區域;再提取疑似火燄區域的麵積變化、錶麵不均度等時空特徵參數;最後將這些特徵參數輸入訓練好的支持嚮量機( SVM )分類器以識彆火燄區域。實驗結果錶明,算法不但在提高瞭檢測率的同時降低瞭誤檢率,而且適用範圍廣,是一種有效的火燄檢測算法。
침대전통시빈형화염검측산법오보솔고、국한성강등문제,제출일충사보화염검측산법。수선이용일충자괄응혼합고사모형(GMM)검측시빈서렬중적운동목표;연후채용모호C균치(FCM)취류산법분할의사화염구역여비화구역;재제취의사화염구역적면적변화、표면불균도등시공특정삼수;최후장저사특정삼수수입훈련호적지지향량궤( SVM )분류기이식별화염구역。실험결과표명,산법불단재제고료검측솔적동시강저료오검솔,이차괄용범위엄,시일충유효적화염검측산법。
An effective, four-stage fire-detection algorithm used to automatically detect fire in video images was presented in this paper. An adaptive Gaussian mixture model was used to detect moving regions in a video clip. A fuzzy C- means (FCM) algorithm was adopted to segment the candidate fire regions (fire and fire-colored objects) from these moving regions based on the color of fire. Some special parameters were extracted based on the tempo-spatial characteristics of fire regions; these parameters included the area randomness, surface roughness and motion estimation of fire. Finally, these parameters extracted from the third stage were used as input feature vectors to train a support vector machine(SVM) classifier, which was then used by the fire alarm to distinguish between fire and non-fire. Experimental results indicate that the proposed method outperforms other fire detection algorithms, providing high reliability and a low false alarm rate.