红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
5期
1594-1599
,共6页
串级自抗扰%弹性飞翼无人机%宽包线控制%刚弹耦合
串級自抗擾%彈性飛翼無人機%寬包線控製%剛彈耦閤
천급자항우%탄성비익무인궤%관포선공제%강탄우합
cascade ADRC%flexible flying wing UAV%wide envelope control%rigid body/elastic body coupling
文中针对飞翼无人机因其宽泛的飞行包线和特殊的布局带来的飞行控制技术难点,给出了一种自适应串级自抗扰飞翼无人机宽包线控制算法。首先,推导了适用于该算法的弹性飞翼无人机的非线性数学模型;其次,分别设计了弹性飞翼无人机的内环和外环自抗扰姿态控制器。自适应自抗扰控制器利用扩张状态观测器进行估计并动态反馈补偿,再利用NLSEF抑制补偿残差;不需要无人机精确的模型参数,也无需精确的气动参数及摄动界限。仿真分析显示所设计的自适应自抗扰控制器较好地解决了弹性飞翼无人机从低空低速到高空高速的鲁棒控制,能够克服干扰及气动模态参数大范围摄动的影响。
文中針對飛翼無人機因其寬汎的飛行包線和特殊的佈跼帶來的飛行控製技術難點,給齣瞭一種自適應串級自抗擾飛翼無人機寬包線控製算法。首先,推導瞭適用于該算法的彈性飛翼無人機的非線性數學模型;其次,分彆設計瞭彈性飛翼無人機的內環和外環自抗擾姿態控製器。自適應自抗擾控製器利用擴張狀態觀測器進行估計併動態反饋補償,再利用NLSEF抑製補償殘差;不需要無人機精確的模型參數,也無需精確的氣動參數及攝動界限。倣真分析顯示所設計的自適應自抗擾控製器較好地解決瞭彈性飛翼無人機從低空低速到高空高速的魯棒控製,能夠剋服榦擾及氣動模態參數大範圍攝動的影響。
문중침대비익무인궤인기관범적비행포선화특수적포국대래적비행공제기술난점,급출료일충자괄응천급자항우비익무인궤관포선공제산법。수선,추도료괄용우해산법적탄성비익무인궤적비선성수학모형;기차,분별설계료탄성비익무인궤적내배화외배자항우자태공제기。자괄응자항우공제기이용확장상태관측기진행고계병동태반궤보상,재이용NLSEF억제보상잔차;불수요무인궤정학적모형삼수,야무수정학적기동삼수급섭동계한。방진분석현시소설계적자괄응자항우공제기교호지해결료탄성비익무인궤종저공저속도고공고속적로봉공제,능구극복간우급기동모태삼수대범위섭동적영향。
The full envelope robust control of flying wing UAV is a difficult point because of its wide envelope and non-conventional layout. In this paper, a flight control scheme was proposed based on adaptation cascade active-disturbance-rejecdon control (ADRC) technique. The robust control design was divided into two steps; Firstly, a nonlinear mathematical model for the algorithm of flying wing UAV was deduced. Secondly, the flying wing UAV inner and outer ADRC attitude controller were designed respectively, the extended state observer was used to estimate and implement dynamic feedback compensation, and then the NLSEF was used to inhibit the compensating residual; ADRC controller was designed without a precise model of vehicle, and without precise perturbation boundaries of aerodynamic parameters. The simulation shows that the control structure is robust from low altitude and low speed to high altitude and high speed. The control system can overcome the impact of large-scale perturbations of interference and aerodynamic parameter.