红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
5期
1555-1560
,共6页
微粒群算法%模拟退火%动态补偿%光纤陀螺
微粒群算法%模擬退火%動態補償%光纖陀螺
미립군산법%모의퇴화%동태보상%광섬타라
particle swarm algorithm%simulated annealing%dynamic compensation%FOG
光纤陀螺惯导系统在进行空间自主导航时,需要经历长期复杂的空间环境,这会使惯性仪表的某些性能发生变化,光纤陀螺仪的光功率下降是一种比较典型的失效模式,这会导致光纤陀螺仪的带宽下降,当航天器进行变轨或姿态机动时其导航精度会降低。针对上述问题,文中提出了微粒群优化的光纤陀螺仪动态补偿方法,根据光纤陀螺仪和参考模型在相同输入下的响应,优化得到补偿环节的参数。但微粒群算法存在过早陷入局部最优解的缺陷,为提高算法的全局搜索能力,采用模拟退火算法使其以较大的概率跳出局部最优解。通过光纤陀螺导航系统的动态导航试验验证了该方法能够有效地补偿光纤陀螺仪的动态特性,提高机动条件下的导航精度,具有较强的工程实用价值。
光纖陀螺慣導繫統在進行空間自主導航時,需要經歷長期複雜的空間環境,這會使慣性儀錶的某些性能髮生變化,光纖陀螺儀的光功率下降是一種比較典型的失效模式,這會導緻光纖陀螺儀的帶寬下降,噹航天器進行變軌或姿態機動時其導航精度會降低。針對上述問題,文中提齣瞭微粒群優化的光纖陀螺儀動態補償方法,根據光纖陀螺儀和參攷模型在相同輸入下的響應,優化得到補償環節的參數。但微粒群算法存在過早陷入跼部最優解的缺陷,為提高算法的全跼搜索能力,採用模擬退火算法使其以較大的概率跳齣跼部最優解。通過光纖陀螺導航繫統的動態導航試驗驗證瞭該方法能夠有效地補償光纖陀螺儀的動態特性,提高機動條件下的導航精度,具有較彊的工程實用價值。
광섬타라관도계통재진행공간자주도항시,수요경력장기복잡적공간배경,저회사관성의표적모사성능발생변화,광섬타라의적광공솔하강시일충비교전형적실효모식,저회도치광섬타라의적대관하강,당항천기진행변궤혹자태궤동시기도항정도회강저。침대상술문제,문중제출료미립군우화적광섬타라의동태보상방법,근거광섬타라의화삼고모형재상동수입하적향응,우화득도보상배절적삼수。단미립군산법존재과조함입국부최우해적결함,위제고산법적전국수색능력,채용모의퇴화산법사기이교대적개솔도출국부최우해。통과광섬타라도항계통적동태도항시험험증료해방법능구유효지보상광섬타라의적동태특성,제고궤동조건하적도항정도,구유교강적공정실용개치。
When spacecraft moves in the orbit using FOG navigation system, the performance of inertia instrument will fall off after experiencing a long and complicated environment. The power of light source falls off is a kind of fault mode. This mode will induce FOG’s bandwidth to decline and the navigation precision will descend when spacecraft transfers to the other orbit or moves to a bigger angle. To resolve this problem, a method to compensate FOG’s bandwidth using particle swarm optimization algorithm was brought forward. With this method a dynamic compensator could be realized without knowing the dynamic characteristics of FOG. The parameter of the compensator was optimized according to the measurement data of FOG and the reference model. But sometimes this method ran into local optimization easily. To increase this algorithm’s performance, simulated annealing algorithm was induced to avoid local optimization. Finally, dynamic navigation experiment of FOG navigation system show that this algorithm is effective. This method can increase navigation precision when spacecraft moves to a bigger angle and possess a better engineering value.