山东农业大学学报(自然科学版)
山東農業大學學報(自然科學版)
산동농업대학학보(자연과학판)
JOURNAL OF SHANDONG AGRICULTURAL UNIVERSITY(NATURAL SCIENCE)
2014年
4期
610-614
,共5页
正交多项式%自适应Gauss-Legendre算法%自适应Simpson积分
正交多項式%自適應Gauss-Legendre算法%自適應Simpson積分
정교다항식%자괄응Gauss-Legendre산법%자괄응Simpson적분
Orthogonal polynomials%self-adaptive Gauss-Legendre quadrature method%self-adaptive Simpson-method
本文构造了自适应三点Gauss-Legendre求积算法,并初步对该算法和MATLAB自适应Simpson积分程序(quad函数)的计算效率进行了比较。数值结果表明:在同一精度下,该算法的计算成本大约是自适应Simpson积分算法的70%。
本文構造瞭自適應三點Gauss-Legendre求積算法,併初步對該算法和MATLAB自適應Simpson積分程序(quad函數)的計算效率進行瞭比較。數值結果錶明:在同一精度下,該算法的計算成本大約是自適應Simpson積分算法的70%。
본문구조료자괄응삼점Gauss-Legendre구적산법,병초보대해산법화MATLAB자괄응Simpson적분정서(quad함수)적계산효솔진행료비교。수치결과표명:재동일정도하,해산법적계산성본대약시자괄응Simpson적분산법적70%。
In this paper, a self-adaptive three point Gauss-Legendre quadrature method was proposed and the efficiency of the method was compared with the program of QUAD in MATLAB preliminarily. In view of function evaluation times, the computation cost of the new method was almost 70 percentage of QUAD under the same precision.