哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2014年
2期
171-176
,共6页
地表覆盖层%圆孔%圆夹杂%SH波散射%大圆弧假定法%动应力集中%覆盖层半空间
地錶覆蓋層%圓孔%圓夾雜%SH波散射%大圓弧假定法%動應力集中%覆蓋層半空間
지표복개층%원공%원협잡%SH파산사%대원호가정법%동응력집중%복개층반공간
surface elastic layer%circular cavity%circular inclusion%SH-wave scattering%large arc assumed meth-od%dynamic stress concentration%layered half-space
为揭示SH波作用下半空间中覆盖层对圆孔及夹杂动力的影响,基于大圆弧假定法求解所述散射问题,将原问题转化为曲面边界问题。借助Helmholtz定理先写出问题波函数的一般形式解,在满足边界条件的情况下再利用复变函数法把问题化为求解波函数中未知系数的无穷线性代数方程组。算例结果表明,覆盖层刚度和厚度的变化及夹杂的存在可显著改变圆孔周边动应力集中的分布。
為揭示SH波作用下半空間中覆蓋層對圓孔及夾雜動力的影響,基于大圓弧假定法求解所述散射問題,將原問題轉化為麯麵邊界問題。藉助Helmholtz定理先寫齣問題波函數的一般形式解,在滿足邊界條件的情況下再利用複變函數法把問題化為求解波函數中未知繫數的無窮線性代數方程組。算例結果錶明,覆蓋層剛度和厚度的變化及夾雜的存在可顯著改變圓孔週邊動應力集中的分佈。
위게시SH파작용하반공간중복개층대원공급협잡동력적영향,기우대원호가정법구해소술산사문제,장원문제전화위곡면변계문제。차조Helmholtz정리선사출문제파함수적일반형식해,재만족변계조건적정황하재이용복변함수법파문제화위구해파함수중미지계수적무궁선성대수방정조。산례결과표명,복개층강도화후도적변화급협잡적존재가현저개변원공주변동응력집중적분포。
For the purpose of revealing the impact caused by the surface elastic layer in a half-space on the dynamic of the circular cavity and inclusion under the action of the SH-wave, the solution to the mentioned scattering prob-lem was attained through the large-arc assumption method, in which we transformed the original problem into the curved-surface boundary problem. By using the Helmholtz theorem, the general solution of the Biot's wave function was achieved. Under the case of meeting the boundary conditions, by utilizing the complex function method, we converted the present problem into an infinite linear algebraic equation for seeking the solutions to the unknown co-efficients of the wave function. The calculation results in examples show that different stiffness and thickness of the layer and the existence of inclusion can remarkably change the distribution of the dynamic stress concentration a-round the circular cavity.