红外技术
紅外技術
홍외기술
INFRARED TECHNOLOGY
2014年
2期
162-167
,共6页
崔克彬%李宝树%徐雪涛%魏文力
崔剋彬%李寶樹%徐雪濤%魏文力
최극빈%리보수%서설도%위문력
过热故障%NSCT%拓扑矩阵%图像增强%诊断与定位
過熱故障%NSCT%拓撲矩陣%圖像增彊%診斷與定位
과열고장%NSCT%탁복구진%도상증강%진단여정위
overheating fault%NSCT%topology matrix%image enhancement%diagnosis and localization
随着我国智能电网建设进程的推进,其中的智能电气设备能够自动识别故障显得尤为重要,许多电气设备故障都伴有过热现像并具有区域性的特点,体现在红外图像温度与其灰度值具有非线性的映射关系。针对电气设备红外图像对比度差、细节不明显等特点,提出了一种基于非线性NSCT (Nonsubsampled Contourlet Transform)变换的图像增强算法,在算法中构造非线性增强匹配函数,能够对图像强弱边缘进行不同程度的增强,并对噪声有一定的抑制作用。对红外图像进行增强后通过拓扑矩阵修改,实现了图像较高灰度值区域的识别标记,从而实现了电气设备温度过高区域的自动定位,之后采用相对温差法对设备是否为故障进行诊断。实验结果表明,本文方法能够迅速有效地对电气设备疑似过热故障进行自动诊断和定位。
隨著我國智能電網建設進程的推進,其中的智能電氣設備能夠自動識彆故障顯得尤為重要,許多電氣設備故障都伴有過熱現像併具有區域性的特點,體現在紅外圖像溫度與其灰度值具有非線性的映射關繫。針對電氣設備紅外圖像對比度差、細節不明顯等特點,提齣瞭一種基于非線性NSCT (Nonsubsampled Contourlet Transform)變換的圖像增彊算法,在算法中構造非線性增彊匹配函數,能夠對圖像彊弱邊緣進行不同程度的增彊,併對譟聲有一定的抑製作用。對紅外圖像進行增彊後通過拓撲矩陣脩改,實現瞭圖像較高灰度值區域的識彆標記,從而實現瞭電氣設備溫度過高區域的自動定位,之後採用相對溫差法對設備是否為故障進行診斷。實驗結果錶明,本文方法能夠迅速有效地對電氣設備疑似過熱故障進行自動診斷和定位。
수착아국지능전망건설진정적추진,기중적지능전기설비능구자동식별고장현득우위중요,허다전기설비고장도반유과열현상병구유구역성적특점,체현재홍외도상온도여기회도치구유비선성적영사관계。침대전기설비홍외도상대비도차、세절불명현등특점,제출료일충기우비선성NSCT (Nonsubsampled Contourlet Transform)변환적도상증강산법,재산법중구조비선성증강필배함수,능구대도상강약변연진행불동정도적증강,병대조성유일정적억제작용。대홍외도상진행증강후통과탁복구진수개,실현료도상교고회도치구역적식별표기,종이실현료전기설비온도과고구역적자동정위,지후채용상대온차법대설비시부위고장진행진단。실험결과표명,본문방법능구신속유효지대전기설비의사과열고장진행자동진단화정위。
With the advancement of the smart grid construction in China, it becomes particularly important for the smart electrical equipment to automatically identify the fault. Many electrical equipment failures are associated with overheating and have regional characteristics. As a result, there is a nonlinear mapping relationship between infrared image temperature and grey value. Being aimed at poor contrast and unconspicuous details of electrical equipment infrared image, an image enhancement algorithm based on NSCT(nonsubsampled contourlet transform)is proposed and nonlinear enhancement matching function is constructed. By this algorithm, the edge of the image is enhanced in varying degrees and the noise of the image is controlled to a certain extent. After topology matrix being modified, higher image gray value area is identified and electrical equipment’s high temperature area is located automatically. With the relative temperature difference algorithm, electrical equipment failure is diagnosed. Experiment results show that the method can locate and identify electrical equipment suspected overheating fault quickly and effectively.