北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
2期
206-212
,共7页
付昆昆%郑百林%殷永柏%胡腾越%叶林%寿大华
付昆昆%鄭百林%慇永柏%鬍騰越%葉林%壽大華
부곤곤%정백림%은영백%호등월%협림%수대화
薄膜%纳米压痕%断裂%有限元法
薄膜%納米壓痕%斷裂%有限元法
박막%납미압흔%단렬%유한원법
thin films%nanoindentation%fracture%finite element method
硬薄膜往往具有较脆的特性,在过载时易发生脆性断裂。本文研究了硬薄膜/软基体在锥形纳米压头作用下的断裂模式。利用等离子体化学沉积法在聚二醚酮基体上沉积生成类金刚石薄膜。使用纳米压痕法对其进行实验研究,实时记录纳米压头压入样品过程中所受的载荷以及位移。载荷位移曲线中有若干间断点,代表着裂纹的形成和扩展。压痕实验完成后,通过扫描电子显微镜和聚焦离子束观察发现,类金刚石薄膜压痕处出现规则的贯穿厚度的环形裂纹和径向裂纹。最后,利用有限元法分析了硬薄膜/软基体在锥形压头作用下的应力分布,通过cohesive单元模拟环形裂纹的起始和扩展。结果表明:环形裂纹是由薄膜表面较高的径向拉应力引起的,较高的径向拉应力发生于压头和薄膜表面接触区域的外侧;径向裂纹则是由薄膜在界面附近较大的拉应力引起的。并且,各圈环形裂纹的半径基本呈线性递增,这和实验观测基本相符。
硬薄膜往往具有較脆的特性,在過載時易髮生脆性斷裂。本文研究瞭硬薄膜/軟基體在錐形納米壓頭作用下的斷裂模式。利用等離子體化學沉積法在聚二醚酮基體上沉積生成類金剛石薄膜。使用納米壓痕法對其進行實驗研究,實時記錄納米壓頭壓入樣品過程中所受的載荷以及位移。載荷位移麯線中有若榦間斷點,代錶著裂紋的形成和擴展。壓痕實驗完成後,通過掃描電子顯微鏡和聚焦離子束觀察髮現,類金剛石薄膜壓痕處齣現規則的貫穿厚度的環形裂紋和徑嚮裂紋。最後,利用有限元法分析瞭硬薄膜/軟基體在錐形壓頭作用下的應力分佈,通過cohesive單元模擬環形裂紋的起始和擴展。結果錶明:環形裂紋是由薄膜錶麵較高的徑嚮拉應力引起的,較高的徑嚮拉應力髮生于壓頭和薄膜錶麵接觸區域的外側;徑嚮裂紋則是由薄膜在界麵附近較大的拉應力引起的。併且,各圈環形裂紋的半徑基本呈線性遞增,這和實驗觀測基本相符。
경박막왕왕구유교취적특성,재과재시역발생취성단렬。본문연구료경박막/연기체재추형납미압두작용하적단렬모식。이용등리자체화학침적법재취이미동기체상침적생성류금강석박막。사용납미압흔법대기진행실험연구,실시기록납미압두압입양품과정중소수적재하이급위이。재하위이곡선중유약간간단점,대표착렬문적형성화확전。압흔실험완성후,통과소묘전자현미경화취초리자속관찰발현,류금강석박막압흔처출현규칙적관천후도적배형렬문화경향렬문。최후,이용유한원법분석료경박막/연기체재추형압두작용하적응력분포,통과cohesive단원모의배형렬문적기시화확전。결과표명:배형렬문시유박막표면교고적경향랍응력인기적,교고적경향랍응력발생우압두화박막표면접촉구역적외측;경향렬문칙시유박막재계면부근교대적랍응력인기적。병차,각권배형렬문적반경기본정선성체증,저화실험관측기본상부。
This article reports fracture in hard films on a soft substrate under conical indentation. A diamond-like carbon ( DLC) film was deposited onto a poly-ether-ether-ketone ( PEEK) substrate using plasma chemical vapor deposition. Nanoindentation was per-formed on the film surface, in the meanwhile, load and depth data were recorded, and‘pop-in', correlated with crack formation, was found in load-depth curves. Ring cracks and radial cracks in the film were observed by scanning electron microscopy and focused ion beam method after indentation. Finally, finite element analysis using cohesive elements was conducted to study the stress distribution of the hard film/soft substrate. It is found that ring cracks in the thin film are induced by high tensile radial stress on the film surface out-side the contact region of the indenter, while radial cracks are caused by high tensile stress on the thin film near the interface. The re-sults also show that the radius of ring cracks increases with the number of ring cracks, which agrees well with experimental observa-tions.