北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
2期
139-144
,共6页
宋洪庆%刘启鹏%于明旭%吴鹏%张雨
宋洪慶%劉啟鵬%于明旭%吳鵬%張雨
송홍경%류계붕%우명욱%오붕%장우
页岩气%渗流%产能%纳米孔隙%扩散%压裂
頁巖氣%滲流%產能%納米孔隙%擴散%壓裂
혈암기%삼류%산능%납미공극%확산%압렬
shale gas%porous flow%productivity%nanopores%diffusion%fracturing
依据分子运动学理论,对含纳米孔隙页岩储层气体渗流规律进行理论分析,建立适用于多尺度介质的气体运动方程和页岩气输运数学模型,得到径向流条件下的压力分布公式,形成页岩气井控制区域计算方法,建立了压裂井三区耦合非线性渗流产能方程。采用牛顿迭代法进行数值计算,研究分析了生产压差、裂缝半长、裂缝导流能力、扩散系数等参数对页岩气井产量的影响。计算结果表明:气井产量随扩散系数的增大而增大,对于含纳米孔隙的页岩储层中扩散效应对气井的产量贡献不容忽视;在一定的储层和生产条件下,气井产量随裂缝半长的增大而先快速增大后趋于平缓,因此存在一个最佳范围,各参数应进行定量的、合理的优化配置。
依據分子運動學理論,對含納米孔隙頁巖儲層氣體滲流規律進行理論分析,建立適用于多呎度介質的氣體運動方程和頁巖氣輸運數學模型,得到徑嚮流條件下的壓力分佈公式,形成頁巖氣井控製區域計算方法,建立瞭壓裂井三區耦閤非線性滲流產能方程。採用牛頓迭代法進行數值計算,研究分析瞭生產壓差、裂縫半長、裂縫導流能力、擴散繫數等參數對頁巖氣井產量的影響。計算結果錶明:氣井產量隨擴散繫數的增大而增大,對于含納米孔隙的頁巖儲層中擴散效應對氣井的產量貢獻不容忽視;在一定的儲層和生產條件下,氣井產量隨裂縫半長的增大而先快速增大後趨于平緩,因此存在一箇最佳範圍,各參數應進行定量的、閤理的優化配置。
의거분자운동학이론,대함납미공극혈암저층기체삼류규률진행이론분석,건립괄용우다척도개질적기체운동방정화혈암기수운수학모형,득도경향류조건하적압력분포공식,형성혈암기정공제구역계산방법,건립료압렬정삼구우합비선성삼유산능방정。채용우돈질대법진행수치계산,연구분석료생산압차、렬봉반장、렬봉도류능력、확산계수등삼수대혈암기정산량적영향。계산결과표명:기정산량수확산계수적증대이증대,대우함납미공극적혈암저층중확산효응대기정적산량공헌불용홀시;재일정적저층화생산조건하,기정산량수렬봉반장적증대이선쾌속증대후추우평완,인차존재일개최가범위,각삼수응진행정량적、합리적우화배치。
Based on the molecular kinetic theory, the gas seepage law was analyzed in shale gas sediments with nanopores. The motion equation and transport mathematical model of shale gas were established which were suitable for multi-scale media. The pressure distribution formula under radial flow was derived, and a new method to calculate the control area of shale gas wells was formed. The non-linear productivity equation of fractured wells was presented with three-region division. Some parameters, such as production pres-sure difference, fracture half-length, fracture conductivity and diffusion coefficient, which can influence the gas well production were analyzed according the numerical calculation of the Newton iteration method. It is shown that the gas well production increases with increasing diffusion coefficient, and the contribution of diffusion effect to production should not be ignored for shale gas reservoirs with nanopores. In a certain reservoir and production conditions the gas well production increases with the increase of fracture half-length, but the increase rate is slower. Thus there is an optimum combination of parameters for shale gas development.