世界桥梁
世界橋樑
세계교량
WORLD BRIDGE
2014年
3期
5-10
,共6页
连续梁桥%刚构桥%非对称%桥型比选%分跨比%墩高%桥梁设计
連續樑橋%剛構橋%非對稱%橋型比選%分跨比%墩高%橋樑設計
련속량교%강구교%비대칭%교형비선%분과비%돈고%교량설계
continuous girder bridge%rigid-frame bridge%asymmetry%bridge type comparison and selection%side span to main span ratio%pier height%bridge design
思南岩头河大桥桥位处为典型不对称 V 形峡谷,在综合考虑桥址区的地形、地质及水文等自然条件的基础上,经过方案比选,确定采用非对称连续刚构桥型。针对非对称刚构的合理分跨比、墩高等设计难点进行分析研究。结果表明,该桥分跨比不可小于0.3,取值范围宜在0.5~1.0之间;0.405桥墩墩高比优化了桥墩墩高不对称,减少了两墩的高差,避免了双墩抗推刚度相差过大给墩身及上部结构受力带来的不利影响。最终确定上部结构采用(90+162) m 非对称连续刚构,主梁为单箱单室截面,设置三向预应力。下部结构根据不同地质条件采用不同的基础形式。
思南巖頭河大橋橋位處為典型不對稱 V 形峽穀,在綜閤攷慮橋阯區的地形、地質及水文等自然條件的基礎上,經過方案比選,確定採用非對稱連續剛構橋型。針對非對稱剛構的閤理分跨比、墩高等設計難點進行分析研究。結果錶明,該橋分跨比不可小于0.3,取值範圍宜在0.5~1.0之間;0.405橋墩墩高比優化瞭橋墩墩高不對稱,減少瞭兩墩的高差,避免瞭雙墩抗推剛度相差過大給墩身及上部結構受力帶來的不利影響。最終確定上部結構採用(90+162) m 非對稱連續剛構,主樑為單箱單室截麵,設置三嚮預應力。下部結構根據不同地質條件採用不同的基礎形式。
사남암두하대교교위처위전형불대칭 V 형협곡,재종합고필교지구적지형、지질급수문등자연조건적기출상,경과방안비선,학정채용비대칭련속강구교형。침대비대칭강구적합리분과비、돈고등설계난점진행분석연구。결과표명,해교분과비불가소우0.3,취치범위의재0.5~1.0지간;0.405교돈돈고비우화료교돈돈고불대칭,감소료량돈적고차,피면료쌍돈항추강도상차과대급돈신급상부결구수력대래적불리영향。최종학정상부결구채용(90+162) m 비대칭련속강구,주량위단상단실절면,설치삼향예응력。하부결구근거불동지질조건채용불동적기출형식。
The Yantouhe River Bridge in Sinan county is projected to build at a typical asym -metrical V-shaped ravine .Based on the thorough investigation of the natural environment at the bridge site ,including the topographical ,geological and hydrographical conditions ,a type of asym-metrical continuous rigid-frame structure is determined for the bridge by scheme comparison and selection .The key points in the design of the asymmetrical rigid-frame bridge ,such as the rational side span to main span ratio and pier height ,were analyzed and studied with particular concern . The results indicate that the side span to main span ratio should not be set below 0 .3 ,and better within the range of 0 .5 ~ 1 .0 . The 0 .405 pier height ratio optimizes the coordination between piers ,reducing the height difference of the two piers ,and therefore ,avoiding the unfavorable effect of excessive anti-thrust stiffness difference of the two piers on the pier shafts and the load bearing capacity of the superstructure .As a result ,the superstructure is designed as a (90 + 162) m asymmetrical continuous rigid-frame structure .The main girder adopts the single cell single box cross section and is prestressed in three directions .In response to different geological conditions , the substructure will have different foundation options .