天津科技大学学报
天津科技大學學報
천진과기대학학보
JOURNAL OF TIANJIN UNIVERSITY OF SCIENCE & TECHNOLOGY
2014年
1期
75-78
,共4页
熊聪聪%潘璇%赵奇%吴振玲
熊聰聰%潘璇%趙奇%吳振玲
웅총총%반선%조기%오진령
集成预报%多模式%神经网络%径向基函数
集成預報%多模式%神經網絡%徑嚮基函數
집성예보%다모식%신경망락%경향기함수
integrated forecast%multi-model%neural network%radial basis function
针对复杂庞大的多模式数值预报数据,提出一种径向基函数(RBF)神经网络集成天气预报模型。根据天津市预报站点采用的WRF模式、RUC模式等数值预报数据的特点,将多种单模式数据作为RBF神经网络输入,网络输出为集成预报结果。实验表明:RBF神经网络集成预报模型降低了单模式预报误差,更加贴近了真实数据,并且在稳定性和实效性方面均有良好表现。
針對複雜龐大的多模式數值預報數據,提齣一種徑嚮基函數(RBF)神經網絡集成天氣預報模型。根據天津市預報站點採用的WRF模式、RUC模式等數值預報數據的特點,將多種單模式數據作為RBF神經網絡輸入,網絡輸齣為集成預報結果。實驗錶明:RBF神經網絡集成預報模型降低瞭單模式預報誤差,更加貼近瞭真實數據,併且在穩定性和實效性方麵均有良好錶現。
침대복잡방대적다모식수치예보수거,제출일충경향기함수(RBF)신경망락집성천기예보모형。근거천진시예보참점채용적WRF모식、RUC모식등수치예보수거적특점,장다충단모식수거작위RBF신경망락수입,망락수출위집성예보결과。실험표명:RBF신경망락집성예보모형강저료단모식예보오차,경가첩근료진실수거,병차재은정성화실효성방면균유량호표현。
An integrated forecast model based on radial basis function(RBF)neural network was proposed for large com-plex multi-model numerical forecasting data. According to the characteristics of the numerical model forecast data of WRF model and RUC model used in Tianjin,numerical data of several models were chosen as the input of the RBF neural network,and the output is the integrated result. Experiments of temperature integration show that the RBF neural network integration method can reduce the error of the single model. The integrated result does good work in simulating real data. The method also has stability and effectiveness.