高校应用数学学报A辑
高校應用數學學報A輯
고교응용수학학보A집
APPLIED MATHEMATICS A JOURNAL OF CHINESE UNIVERSITIES
2014年
1期
24-30
,共7页
积分边值问题%分数阶微分方程%Caputo型分数阶导数%不动点定理
積分邊值問題%分數階微分方程%Caputo型分數階導數%不動點定理
적분변치문제%분수계미분방정%Caputo형분수계도수%불동점정리
integral boundary value problem%fractional differential equation%Caputo fractional derivative%nonlinear alternative principle
研究了一类具有Riemann-Liouville分数阶积分条件的新分数阶微分方程边值问题,其非线性项包含Caputo型分数阶导数。将该问题转化为等价的积分方程,应用Leray-Schauder不动点定理结合一个范数形式的新不等式,获得了解的存在性充分条件,推广和改进了已有的结果,并给出了应用实例。
研究瞭一類具有Riemann-Liouville分數階積分條件的新分數階微分方程邊值問題,其非線性項包含Caputo型分數階導數。將該問題轉化為等價的積分方程,應用Leray-Schauder不動點定理結閤一箇範數形式的新不等式,穫得瞭解的存在性充分條件,推廣和改進瞭已有的結果,併給齣瞭應用實例。
연구료일류구유Riemann-Liouville분수계적분조건적신분수계미분방정변치문제,기비선성항포함Caputo형분수계도수。장해문제전화위등개적적분방정,응용Leray-Schauder불동점정리결합일개범수형식적신불등식,획득료해적존재성충분조건,추엄화개진료이유적결과,병급출료응용실례。
A class of boundary value problem of fractional differential equation with Riemann-Liouville fractional integral conditions is investigated, which involves the Caputo fractional derivative in nonlinear terms and can be reduced to the equivalent integral equation. By using Leray-Schauder fixed point theory combined with a new inequality of norm form, some sufficient conditions on the exitence of solution for boundary value problem are established. Some known results are extended and improved. An example is given to illustrate the application of the result.