高校应用数学学报A辑
高校應用數學學報A輯
고교응용수학학보A집
APPLIED MATHEMATICS A JOURNAL OF CHINESE UNIVERSITIES
2014年
1期
17-23
,共7页
奇摄动%转向点%非线性边界条件%微分不等式理论
奇攝動%轉嚮點%非線性邊界條件%微分不等式理論
기섭동%전향점%비선성변계조건%미분불등식이론
singular perturbation%turning point%nonlinear boundary condition%the theory of differential inequality
研究了一类具有转向点的非线性边界条件下的二阶非线性方程奇摄动问题。在退化方程的解是(Iq)(或(IIn)或(IIIn))稳定等条件下,利用微分不等式理论证明呈内层性态的解的存在性,并给出了解的渐近估计。
研究瞭一類具有轉嚮點的非線性邊界條件下的二階非線性方程奇攝動問題。在退化方程的解是(Iq)(或(IIn)或(IIIn))穩定等條件下,利用微分不等式理論證明呈內層性態的解的存在性,併給齣瞭解的漸近估計。
연구료일류구유전향점적비선성변계조건하적이계비선성방정기섭동문제。재퇴화방정적해시(Iq)(혹(IIn)혹(IIIn))은정등조건하,이용미분불등식이론증명정내층성태적해적존재성,병급출료해적점근고계。
A class of singular perturbed problems for nonlinear equations with turning point and nonlinear boundary conditions are considered. Under the condition that the reduced solution is (Iq)(or (IIn) or (IIIn)) stable, the existence of solutions which exhibit interior layer behavior is proved and the asymptotic estimation of solutions is given using the method of the theory of differential inequality.