工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2014年
1期
67-74
,共8页
KdV-Burgers方程%概周期解%Galerkin方法
KdV-Burgers方程%概週期解%Galerkin方法
KdV-Burgers방정%개주기해%Galerkin방법
KdV-Burgers equation%almost periodic solution%Galerkin method
KdV-Burgers方程出现在许多物理模型中,是非线性科学领域中的重要模型之一。本文讨论一类具有阻尼和非齐次项的KdV-Burgers方程的概周期解存在性问题。首先利用Galerkin方法构造出方程的有界解,并利用一些数学不等式给出这个解的先验估计;然后利用所得的先验估计和标准的紧致性方法证明方程广义解的存在性;最后证明当方程的非齐次项函数是关于时间变量的概周期函数时,该广义解就是方程的概周期解。
KdV-Burgers方程齣現在許多物理模型中,是非線性科學領域中的重要模型之一。本文討論一類具有阻尼和非齊次項的KdV-Burgers方程的概週期解存在性問題。首先利用Galerkin方法構造齣方程的有界解,併利用一些數學不等式給齣這箇解的先驗估計;然後利用所得的先驗估計和標準的緊緻性方法證明方程廣義解的存在性;最後證明噹方程的非齊次項函數是關于時間變量的概週期函數時,該廣義解就是方程的概週期解。
KdV-Burgers방정출현재허다물리모형중,시비선성과학영역중적중요모형지일。본문토론일류구유조니화비제차항적KdV-Burgers방정적개주기해존재성문제。수선이용Galerkin방법구조출방정적유계해,병이용일사수학불등식급출저개해적선험고계;연후이용소득적선험고계화표준적긴치성방법증명방정엄의해적존재성;최후증명당방정적비제차항함수시관우시간변량적개주기함수시,해엄의해취시방정적개주기해。
The KdV-Burgers equation appears in many physical models. It is one of the most important models in nonlinear science. This paper mainly investigates the existence of the almost periodic solution to a class of KdV-Burgers equations with damping and non-homogeneous terms. The bounded solution to this equation is constructed by using the Galerkin method and the priori estimates are given by employing some mathematical inequalities. Then the existence of the generalized solution is proved by means of the obtained priori estimates and the standard compact method. Finally, it is proved that the generalized solution is the almost periodic solution to the discussed equation when the non-homogeneous term is an almost periodic function with respect to the time variable.