长春理工大学学报(自然科学版)
長春理工大學學報(自然科學版)
장춘리공대학학보(자연과학판)
JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
1期
120-123
,共4页
物价瑞利方程%时滞%Euler方法%Hopf分支%Neimark-Sacker分支%数值逼近
物價瑞利方程%時滯%Euler方法%Hopf分支%Neimark-Sacker分支%數值逼近
물개서리방정%시체%Euler방법%Hopf분지%Neimark-Sacker분지%수치핍근
Price Reyleigh equation%delays%Euler method%Hopf bifurcation%Neimark-Sacker bifurcation%numerical approximation
研究了以滞量为参数的具时滞物价瑞利方程的数值Hopf分支问题。首先利用欧拉方法将得到的时滞差分方程表示为映射,然后利用离散动力系统的分支理论,在瑞利方程具有Hopf分支的条件下,讨论了差分方程Hopf分支存在的条件及连续系统与其数值逼近间的关系,最后证明了当连续系统产生Hopf分支时,其Euler离散将产生Neimark-Sacker分支,进而得到结论:Euler离散使得方程的Hopf分支性质得以保持。
研究瞭以滯量為參數的具時滯物價瑞利方程的數值Hopf分支問題。首先利用歐拉方法將得到的時滯差分方程錶示為映射,然後利用離散動力繫統的分支理論,在瑞利方程具有Hopf分支的條件下,討論瞭差分方程Hopf分支存在的條件及連續繫統與其數值逼近間的關繫,最後證明瞭噹連續繫統產生Hopf分支時,其Euler離散將產生Neimark-Sacker分支,進而得到結論:Euler離散使得方程的Hopf分支性質得以保持。
연구료이체량위삼수적구시체물개서리방정적수치Hopf분지문제。수선이용구랍방법장득도적시체차분방정표시위영사,연후이용리산동력계통적분지이론,재서리방정구유Hopf분지적조건하,토론료차분방정Hopf분지존재적조건급련속계통여기수치핍근간적관계,최후증명료당련속계통산생Hopf분지시,기Euler리산장산생Neimark-Sacker분지,진이득도결론:Euler리산사득방정적Hopf분지성질득이보지。
The numerical Hopf bifurcation for Price Reyleigh equation with delays is investigated,through using a delay as a parameter. At first, the delay deference equation obtained by using Euler method is written as a map. And then according to the theories of bifurcation for discrete dynamical systems,under the condition that Price Reyleigh equation has bifurcations,the conditions of Hopf bifurcation difference equations as well as the relations between successive sys-tem and numerical approximation are discussed. Finally,it is proved that when successive system produces Hopf bifurca-tion,the Euler discretion produces a Neimark-Sacker bifurcation. Further,it draws the conclusion that the Euler discre-tion preserves the features of the Hopf bifurcation.