红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
2期
610-614
,共5页
吴思%刘梦娇%高道江%赵燕%赖欣%吴云%毕剑
吳思%劉夢嬌%高道江%趙燕%賴訢%吳雲%畢劍
오사%류몽교%고도강%조연%뢰흔%오운%필검
LiNi1/3Co1/3Mn1/3O2%粉体%类共沉淀法%循环伏安%交流阻抗
LiNi1/3Co1/3Mn1/3O2%粉體%類共沉澱法%循環伏安%交流阻抗
LiNi1/3Co1/3Mn1/3O2%분체%류공침정법%순배복안%교류조항
LiNi1/3Co1/3Mn1/3O2%powder%quasi-coprecipitation method%cyclic voltammetry%electrochemical impedance
在含有Li+、Co2+、Ni2+、Mn2+离子的混合溶液中加入(NH4)2CO3作沉淀剂,通过一步共沉淀反应得到含有四种金属离子的混合沉淀前驱体。前驱体经烘干,研磨后在不同温度(700~1000℃)及不同时间(6~24 h)条件下进行烧结,即得到LiNi1/3Co1/3Mn1/3O2粉体。分别通过X射线衍射(XRD)、扫描电镜(SEM)及循环伏安(CV)、交流阻抗对制备粉体的微结构进行表征和对样品的电化学性能进行测试。结果表明:获得的LiNi1/3Co1/3Mn1/3O2粉体为α-NaFeO2层状结构,颗粒分布均匀,放电比电容高,阻抗小。其中在900℃下烧结12 h所得的LiNi1/3Co1/3Mn1/3O2粉体电化学性能最优。当电压窗口在(0~1.4)Vvs.SCE、扫描速度为5 mV·s-1、电解液为1 mol·L-1 Li2SO4溶液时,其比容量可达399.46 F·g-1;并且其阻抗也最小。
在含有Li+、Co2+、Ni2+、Mn2+離子的混閤溶液中加入(NH4)2CO3作沉澱劑,通過一步共沉澱反應得到含有四種金屬離子的混閤沉澱前驅體。前驅體經烘榦,研磨後在不同溫度(700~1000℃)及不同時間(6~24 h)條件下進行燒結,即得到LiNi1/3Co1/3Mn1/3O2粉體。分彆通過X射線衍射(XRD)、掃描電鏡(SEM)及循環伏安(CV)、交流阻抗對製備粉體的微結構進行錶徵和對樣品的電化學性能進行測試。結果錶明:穫得的LiNi1/3Co1/3Mn1/3O2粉體為α-NaFeO2層狀結構,顆粒分佈均勻,放電比電容高,阻抗小。其中在900℃下燒結12 h所得的LiNi1/3Co1/3Mn1/3O2粉體電化學性能最優。噹電壓窗口在(0~1.4)Vvs.SCE、掃描速度為5 mV·s-1、電解液為1 mol·L-1 Li2SO4溶液時,其比容量可達399.46 F·g-1;併且其阻抗也最小。
재함유Li+、Co2+、Ni2+、Mn2+리자적혼합용액중가입(NH4)2CO3작침정제,통과일보공침정반응득도함유사충금속리자적혼합침정전구체。전구체경홍간,연마후재불동온도(700~1000℃)급불동시간(6~24 h)조건하진행소결,즉득도LiNi1/3Co1/3Mn1/3O2분체。분별통과X사선연사(XRD)、소묘전경(SEM)급순배복안(CV)、교류조항대제비분체적미결구진행표정화대양품적전화학성능진행측시。결과표명:획득적LiNi1/3Co1/3Mn1/3O2분체위α-NaFeO2층상결구,과립분포균균,방전비전용고,조항소。기중재900℃하소결12 h소득적LiNi1/3Co1/3Mn1/3O2분체전화학성능최우。당전압창구재(0~1.4)Vvs.SCE、소묘속도위5 mV·s-1、전해액위1 mol·L-1 Li2SO4용액시,기비용량가체399.46 F·g-1;병차기조항야최소。
(NH4)2CO3 was added into mixed solution contained Li +, Co2+, Ni2+ and Mn2+ ions as a precipitant. The mixing precipitation precursors were prepared by one-step co-precipitation reaction. After being dried and ground, the precursors were sintered under different sintering temperatures(700-1 000℃) and different sintering times (6 -24 h), and then LiNi1/3Co1/3Mn1/3O2 powders were obtained. The microstructures and electrochemical properties of the as-prepared powders were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance. The results show that the obtained LiNi1/3Co1/3Mn1/3O2 powders are pure α-NaFeO2 layered structure;the powders are uniform and exhibit excellent discharge specific capacitance and lower impedance. After sintered at 900℃ for 12 h, the obtained LiNi1/3Co1/3Mn1/3O2 powder exhibits the optimum electrochemical performance. The specific capacitance of the LiNi1/3Co1/3Mn1/3O2 powders can reach 399.46 F·g-1 within potential range of (0-1.4) V at a scanning rate of 5 mV·s-1 in 1 mol·L-1 Li2SO4 solution.And the powders also have the lowest impedance.