计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2014年
3期
313-320
,共8页
任亚峰%尹兰%姬东鸿
任亞峰%尹蘭%姬東鴻
임아봉%윤란%희동홍
虚假评论%聚类%语言结构%情感极性%遗传算法
虛假評論%聚類%語言結構%情感極性%遺傳算法
허가평론%취류%어언결구%정감겁성%유전산법
deceptive reviews%clustering%language structure%sentiment polarity%genetic algorithm
随着电子商务的发展,识别网络中的虚假评论意义重大。传统的启发式策略或全监督学习算法不能有效地解决该问题。虚假评论与真实评论在语言结构和情感极性上存在差异,提出基于遗传算法对语言结构及情感极性特征进行优化选择,并利用选取的特征结合无监督硬、软聚类算法对虚假评论进行识别。实验结果验证了所提算法的有效性。
隨著電子商務的髮展,識彆網絡中的虛假評論意義重大。傳統的啟髮式策略或全鑑督學習算法不能有效地解決該問題。虛假評論與真實評論在語言結構和情感極性上存在差異,提齣基于遺傳算法對語言結構及情感極性特徵進行優化選擇,併利用選取的特徵結閤無鑑督硬、軟聚類算法對虛假評論進行識彆。實驗結果驗證瞭所提算法的有效性。
수착전자상무적발전,식별망락중적허가평론의의중대。전통적계발식책략혹전감독학습산법불능유효지해결해문제。허가평론여진실평론재어언결구화정감겁성상존재차이,제출기우유전산법대어언결구급정감겁성특정진행우화선택,병이용선취적특정결합무감독경、연취류산법대허가평론진행식별。실험결과험증료소제산법적유효성。
With the development of electronic commerce, assessing the trustworthiness of reviews is becoming a key issue. Heuristic strategies or traditional supervised learning methods cannot effectively solve this task. There must be some differences on language structure and sentiment polarity between deceptive reviews and truthful ones. This paper defines the features related to the review text and uses genetic algorithm for the features selection of lan-guage structure and sentiment polarity. Then, this paper uses the selected features and combines two non-supervision clustering algorithms to identify deceptive reviews. The experimental results verify the effectiveness of the proposed methods.