红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
6期
2013-2020
,共8页
FAST-Difference%RI-LBP%混合spill树%RANSAC
FAST-Difference%RI-LBP%混閤spill樹%RANSAC
FAST-Difference%RI-LBP%혼합spill수%RANSAC
FAST- Difference%RI- LBP%hybrid spill- tree%RANSAC
针对传统局部不变特征算子主方向提取不准确和匹配阶段过于耗时的问题,提出一种基于RI- LBP算子和混合spill树的快速局部不变特征算法。首先提出一种FAST- Difference算法,提取出模板图像和待匹配图像的稳定特征点,然后使用旋转不变的RI- LBP描述符计算特征向量,最后对特征向量集使用混合spill树进行匹配并使用RANSAC算法剔除误匹配点。RI- LBP算子自身的旋转不变性能够在一定程度上克服特征点主方向确定不准确的缺点,使特征描述符的提取更加稳定,并生成更简单的53维局部不变特征描述符。混合spill树相对于kd- tree省略了回溯过程,对于高维数据拥有更好的匹配效率。实验证明:该算法与SURF算法描述能力相近,旋转和光照条件下比SURF性能更优,并且匹配速度更快。
針對傳統跼部不變特徵算子主方嚮提取不準確和匹配階段過于耗時的問題,提齣一種基于RI- LBP算子和混閤spill樹的快速跼部不變特徵算法。首先提齣一種FAST- Difference算法,提取齣模闆圖像和待匹配圖像的穩定特徵點,然後使用鏇轉不變的RI- LBP描述符計算特徵嚮量,最後對特徵嚮量集使用混閤spill樹進行匹配併使用RANSAC算法剔除誤匹配點。RI- LBP算子自身的鏇轉不變性能夠在一定程度上剋服特徵點主方嚮確定不準確的缺點,使特徵描述符的提取更加穩定,併生成更簡單的53維跼部不變特徵描述符。混閤spill樹相對于kd- tree省略瞭迴溯過程,對于高維數據擁有更好的匹配效率。實驗證明:該算法與SURF算法描述能力相近,鏇轉和光照條件下比SURF性能更優,併且匹配速度更快。
침대전통국부불변특정산자주방향제취불준학화필배계단과우모시적문제,제출일충기우RI- LBP산자화혼합spill수적쾌속국부불변특정산법。수선제출일충FAST- Difference산법,제취출모판도상화대필배도상적은정특정점,연후사용선전불변적RI- LBP묘술부계산특정향량,최후대특정향량집사용혼합spill수진행필배병사용RANSAC산법척제오필배점。RI- LBP산자자신적선전불변성능구재일정정도상극복특정점주방향학정불준학적결점,사특정묘술부적제취경가은정,병생성경간단적53유국부불변특정묘술부。혼합spill수상대우kd- tree성략료회소과정,대우고유수거옹유경호적필배효솔。실험증명:해산법여SURF산법묘술능력상근,선전화광조조건하비SURF성능경우,병차필배속도경쾌。
In order to solve the problem that traditional local invariant descriptors extracted inaccurate main direction and spent too much time in matching vectors, a new method for fast image registration based on RI- LBP algorithm and hybrid spill- tree was proposed. Firstly, stable feature points of template image and image to be matched were extracted by the proposed FAST- Difference Algorithm. Feature vectors were calculated using rotation invariant RI- LBP descriptors. At last feature vector sets were matched using hybrid spill- tree and mismatching points were eliminated by RANSAC. The problem that the main direction couldn’t be extracted accurately was conquered because of the rotation invariant of RI- LBP , which means the feature descriptors were more stable. At the same time the feature vectors contain contained 53 dimensions, which are more simple. Spill- tree had better matching efficiency for high- dimensional data because it omitted the process of backtracking. The experiment results indicated that the proposed method cost much less time while retained nearly the same describing performance with SURF and achieved better performance in rotation and illumination changes.