计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
3期
194-197,201
,共5页
定位故障%改进的局部线性分析%降维%OIF-Elman神经网络
定位故障%改進的跼部線性分析%降維%OIF-Elman神經網絡
정위고장%개진적국부선성분석%강유%OIF-Elman신경망락
fault locating%improved locally linear embedding analysis%dimension reduction%OIF-Elman neural network
如今的电路越来越复杂,随之而来的就是电路系统的高故障性,所以如何定位故障发生成为一大难题。文中基于提高故障诊断性能的目的,先采用一种改进的局部线性分析算法作为初始数据处理器对输出响应序列进行降维,提取故障特征向量,然后再通过OIF-Elman神经网络搭建故障分类器,对电路进行故障检测。仿真结果表明,将改进过的局部线性分析算法和OIF-Elman神经网络应用到故障诊断中,不仅具有比传统BP神经网络更精确的故障诊断正确率,且整个网络的收敛速度也会有明显提升。
如今的電路越來越複雜,隨之而來的就是電路繫統的高故障性,所以如何定位故障髮生成為一大難題。文中基于提高故障診斷性能的目的,先採用一種改進的跼部線性分析算法作為初始數據處理器對輸齣響應序列進行降維,提取故障特徵嚮量,然後再通過OIF-Elman神經網絡搭建故障分類器,對電路進行故障檢測。倣真結果錶明,將改進過的跼部線性分析算法和OIF-Elman神經網絡應用到故障診斷中,不僅具有比傳統BP神經網絡更精確的故障診斷正確率,且整箇網絡的收斂速度也會有明顯提升。
여금적전로월래월복잡,수지이래적취시전로계통적고고장성,소이여하정위고장발생성위일대난제。문중기우제고고장진단성능적목적,선채용일충개진적국부선성분석산법작위초시수거처리기대수출향응서렬진행강유,제취고장특정향량,연후재통과OIF-Elman신경망락탑건고장분류기,대전로진행고장검측。방진결과표명,장개진과적국부선성분석산법화OIF-Elman신경망락응용도고장진단중,불부구유비전통BP신경망락경정학적고장진단정학솔,차정개망락적수렴속도야회유명현제승。
The circuit is more and more complex and followed by a circuit system failure,so how to locate the fault occurs is a major problem. For improving the performance of fault diagnosis,use an improved locally linear embedding analysis method as the initial data ( raw data) processor for output response sequence to reduce the dimension and extract fault feature vector,and then through the OIF-El-man neural network to build fault classifier for fault detection circuit. Simulation results show that the fault diagnosis method is made of improved LLE and OIF-Elman neural network is not only to have the better diagnosis rate compared with the BP neural network,but also greatly enhance convergence speed for the whole network.