化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
3期
981-992
,共12页
李作成%钱斌%胡蓉%罗蓉娟%张桂莲
李作成%錢斌%鬍蓉%囉蓉娟%張桂蓮
리작성%전빈%호용%라용연%장계련
异构并行机%多工序%遗传算法%分布估计算法%优化%概率模型%计算机模拟
異構併行機%多工序%遺傳算法%分佈估計算法%優化%概率模型%計算機模擬
이구병행궤%다공서%유전산법%분포고계산법%우화%개솔모형%계산궤모의
heterogeneous parallel machine%multiple operations%genetic algorithm%estimation of distribution algorithm%optimization%probability model%computer simulation
针对化工生产中广泛存在的一类带多工序的异构并行机调度问题,即部分产品需多工序加工,同时不同产品间带序相关设置时间的异构并行机调度问题(heterogeneous parallel machine scheduling problem with multiple operations and sequence-dependent setup times, HPMSP_MOSST),提出了一种遗传-分布估计算法(genetic algorithm-estimation of distribution algorithm, GA-EDA),用于优化最早完工时间(makespan)。首先,提出了一种基于GA的概率模型训练机制,用来提高概率模型在算法进化初期的信息积累量,进而提高搜索的效率;其次,设计了一种有效的 GA 与 EDA 混合策略,使得算法的全局探索和局部开发能力得到合理平衡。计算机模拟验证了GA-EDA的有效性和鲁棒性。
針對化工生產中廣汎存在的一類帶多工序的異構併行機調度問題,即部分產品需多工序加工,同時不同產品間帶序相關設置時間的異構併行機調度問題(heterogeneous parallel machine scheduling problem with multiple operations and sequence-dependent setup times, HPMSP_MOSST),提齣瞭一種遺傳-分佈估計算法(genetic algorithm-estimation of distribution algorithm, GA-EDA),用于優化最早完工時間(makespan)。首先,提齣瞭一種基于GA的概率模型訓練機製,用來提高概率模型在算法進化初期的信息積纍量,進而提高搜索的效率;其次,設計瞭一種有效的 GA 與 EDA 混閤策略,使得算法的全跼探索和跼部開髮能力得到閤理平衡。計算機模擬驗證瞭GA-EDA的有效性和魯棒性。
침대화공생산중엄범존재적일류대다공서적이구병행궤조도문제,즉부분산품수다공서가공,동시불동산품간대서상관설치시간적이구병행궤조도문제(heterogeneous parallel machine scheduling problem with multiple operations and sequence-dependent setup times, HPMSP_MOSST),제출료일충유전-분포고계산법(genetic algorithm-estimation of distribution algorithm, GA-EDA),용우우화최조완공시간(makespan)。수선,제출료일충기우GA적개솔모형훈련궤제,용래제고개솔모형재산법진화초기적신식적루량,진이제고수색적효솔;기차,설계료일충유효적 GA 여 EDA 혼합책략,사득산법적전국탐색화국부개발능력득도합리평형。계산궤모의험증료GA-EDA적유효성화로봉성。
A genetic algorithm-estimation of distribution algorithm (GA-EDA) was proposed to optimize the makespan criterion for a kind of heterogeneous parallel machine scheduling problem, i.e., the heterogeneous parallel machine scheduling problem with multiple operations and sequence-dependent setup times (HPMSP_MOSST), which widely existed in chemical production. Firstly, a probability model training mechanism based on GA was presented and used to increase the information accumulation of the probability model at the initial stage of the evolution, and then the efficiency of search was improved. Secondly, an effective hybrid strategy of GA and EDA was designed to help the algorithm achieve a reasonable balance between global exploration and local exploitation abilities. Computer simulation showed the effectiveness and robustness of the proposed GA-EDA.