现代电子技术
現代電子技術
현대전자기술
MODERN ELECTRONICS TECHNIQUE
2014年
6期
12-14,18
,共4页
王路%高秀峰%齐剑峰%刘爱珍%李婷
王路%高秀峰%齊劍峰%劉愛珍%李婷
왕로%고수봉%제검봉%류애진%리정
BP神经网络%Gauss变异%学习率%冲量系数%动态调整
BP神經網絡%Gauss變異%學習率%遲量繫數%動態調整
BP신경망락%Gauss변이%학습솔%충량계수%동태조정
BP neural network%Gauss mutation%learning rate%impulse coefficient%dynamic adjustment
为了克服传统BP算法收敛速度慢和局部极小点等问题,提出了一种改进的BP网络训练方法,将改进的BP算法和遗传算法相结合。首先引入遗传算法中群体的概念,选取最好个体中的误差作为最小误差,其次利用Gauss变异生成的两个小随机数作为BP算法中的学习率和冲量系数,实现对两个参数的动态调整,以达到对BP网络的权值优化的目的。实验结果表明,该方法有效提高了BP网络的收敛速度,在训练时间方面具有明显的优越性,具有较好的实用性。
為瞭剋服傳統BP算法收斂速度慢和跼部極小點等問題,提齣瞭一種改進的BP網絡訓練方法,將改進的BP算法和遺傳算法相結閤。首先引入遺傳算法中群體的概唸,選取最好箇體中的誤差作為最小誤差,其次利用Gauss變異生成的兩箇小隨機數作為BP算法中的學習率和遲量繫數,實現對兩箇參數的動態調整,以達到對BP網絡的權值優化的目的。實驗結果錶明,該方法有效提高瞭BP網絡的收斂速度,在訓練時間方麵具有明顯的優越性,具有較好的實用性。
위료극복전통BP산법수렴속도만화국부겁소점등문제,제출료일충개진적BP망락훈련방법,장개진적BP산법화유전산법상결합。수선인입유전산법중군체적개념,선취최호개체중적오차작위최소오차,기차이용Gauss변이생성적량개소수궤수작위BP산법중적학습솔화충량계수,실현대량개삼수적동태조정,이체도대BP망락적권치우화적목적。실험결과표명,해방법유효제고료BP망락적수렴속도,재훈련시간방면구유명현적우월성,구유교호적실용성。
In order to improve the traditional BP algorithm,whose convergence speed is low and which is easy to fall into local minimum,an improved training method of BP neural network is proposed,in which the genetic algorithm is combined with the improved BP algorithm. The concept of population in genetic algorithm was introduced. The error of the best individual was selected as the minimum error. Two small random numbers generated by Gauss mutation was taken as the learning rate and the impulse coefficient in BP algorithn to realize the dynamic adjustment of the two parameters and weight optimization of BP net-work. Experimental results show that the method improves the convergence speed of the neural network effectively,and has an obvious superiority in training time and a good practicability.