国防科技大学学报
國防科技大學學報
국방과기대학학보
JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY
2014年
1期
148-153
,共6页
岳师光%查亚兵%尹全军%张琪
嶽師光%查亞兵%尹全軍%張琪
악사광%사아병%윤전군%장기
计算机生成兵力%规划识别%路径规划%抽象隐马尔可夫模型
計算機生成兵力%規劃識彆%路徑規劃%抽象隱馬爾可伕模型
계산궤생성병력%규화식별%로경규화%추상은마이가부모형
computer generated forces%plan recognition%path plan%abstract hidden markov model
路径规划识别是一种以位置信息为输入的在线识别。为了使C GF能在仿真中识别对手的路径和终点目标,在分析路径规划层次的基础上引入了抽象隐马尔可夫模型的识别框架。针对标准模型在对手更改终点目标和自上而下规划时无法识别的问题,提出了一种顶层策略可变的抽象隐马尔可夫模型。为模型的顶层策略增加初始分布和策略终止变量,更改了策略终止变量间的依赖关系,使下层策略能被强制终止。给出了改进后DBN结构,并通过推导条件概率更新和RB变量抽样流程实现了模型的近似推理。仿真实验表明,改进模型能准确识别给定环境下的各类典型航迹,不仅在终点目标不变时能较好地维持标准模型的识别准确率,在提供足够的观测数据后还能很好地解决变目标识别问题。
路徑規劃識彆是一種以位置信息為輸入的在線識彆。為瞭使C GF能在倣真中識彆對手的路徑和終點目標,在分析路徑規劃層次的基礎上引入瞭抽象隱馬爾可伕模型的識彆框架。針對標準模型在對手更改終點目標和自上而下規劃時無法識彆的問題,提齣瞭一種頂層策略可變的抽象隱馬爾可伕模型。為模型的頂層策略增加初始分佈和策略終止變量,更改瞭策略終止變量間的依賴關繫,使下層策略能被彊製終止。給齣瞭改進後DBN結構,併通過推導條件概率更新和RB變量抽樣流程實現瞭模型的近似推理。倣真實驗錶明,改進模型能準確識彆給定環境下的各類典型航跡,不僅在終點目標不變時能較好地維持標準模型的識彆準確率,在提供足夠的觀測數據後還能很好地解決變目標識彆問題。
로경규화식별시일충이위치신식위수입적재선식별。위료사C GF능재방진중식별대수적로경화종점목표,재분석로경규화층차적기출상인입료추상은마이가부모형적식별광가。침대표준모형재대수경개종점목표화자상이하규화시무법식별적문제,제출료일충정층책략가변적추상은마이가부모형。위모형적정층책략증가초시분포화책략종지변량,경개료책략종지변량간적의뢰관계,사하층책략능피강제종지。급출료개진후DBN결구,병통과추도조건개솔경신화RB변량추양류정실현료모형적근사추리。방진실험표명,개진모형능준학식별급정배경하적각류전형항적,불부재종점목표불변시능교호지유지표준모형적식별준학솔,재제공족구적관측수거후환능흔호지해결변목표식별문제。
Path plan recognition has been a kind of online recognition using positions as inputs.To allow CGF to recognize opponents’paths and destinations in simulation,a recognition framework of Abstract Hidden Markov Model is introduced following analyzing the hierarchy of path plan.Since it is difficult to recognize the path plans using standard model when destinations are changed and plans are executed from top to bottom, the Abstract Hidden Markov Model with Changeable Top-level Policy is proposed.The initial distribution and termination variables of top policy were given and the relations between policy termination variables were adjusted to allow the lower policy for a forced termination.The modified DBN structure was presented,and the approximate inference was realized by deducing processes of updating conditional probability and sampling RB variables as well.Simulation experiments show that different kinds of typical paths in specific environment can be recognized efficiently with this method.The modified model not only confirms good recognition accuracy compared with the standard model under the circumstance when destination is not changing,but also performs well in solving destination changing path plan recognition problems with sufficient observation data provided.