国防科技大学学报
國防科技大學學報
국방과기대학학보
JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY
2014年
1期
46-51
,共6页
离轨制动%再入接口%能量-动量矩%推-滑%轨道规划%离轨制导
離軌製動%再入接口%能量-動量矩%推-滑%軌道規劃%離軌製導
리궤제동%재입접구%능량-동량구%추-활%궤도규화%리궤제도
deorbit braking%entry interface%energy-angular momentum%burn-coast%trajectory planning%deorbit guidance
对航天器在有限推力作用下的“推-滑-推-滑”离轨轨道制导问题进行了研究。将再入接口条件转化为能量与动量矩指标,基于该指标得出了单次“推-滑”的临界地心距,分析了其对离轨策略的影响;推导了有推力作用时飞行器能量与动量矩的相对变化规律,通过使飞行器的能量与动量矩以同样的相对速度减小的方法,导出了制导方程;得到了首次制动时推力方向始终与速度方向相反,二次制动根据制导方程进行导引的轨道形式;对不同高度与不同再入接口条件的离轨问题进行了数值仿真。仿真结果表明,该方法计算量小,可有效解决单次“推-滑”无法实现的离轨制导问题。
對航天器在有限推力作用下的“推-滑-推-滑”離軌軌道製導問題進行瞭研究。將再入接口條件轉化為能量與動量矩指標,基于該指標得齣瞭單次“推-滑”的臨界地心距,分析瞭其對離軌策略的影響;推導瞭有推力作用時飛行器能量與動量矩的相對變化規律,通過使飛行器的能量與動量矩以同樣的相對速度減小的方法,導齣瞭製導方程;得到瞭首次製動時推力方嚮始終與速度方嚮相反,二次製動根據製導方程進行導引的軌道形式;對不同高度與不同再入接口條件的離軌問題進行瞭數值倣真。倣真結果錶明,該方法計算量小,可有效解決單次“推-滑”無法實現的離軌製導問題。
대항천기재유한추력작용하적“추-활-추-활”리궤궤도제도문제진행료연구。장재입접구조건전화위능량여동량구지표,기우해지표득출료단차“추-활”적림계지심거,분석료기대리궤책략적영향;추도료유추력작용시비행기능량여동량구적상대변화규률,통과사비행기적능량여동량구이동양적상대속도감소적방법,도출료제도방정;득도료수차제동시추력방향시종여속도방향상반,이차제동근거제도방정진행도인적궤도형식;대불동고도여불동재입접구조건적리궤문제진행료수치방진。방진결과표명,해방법계산량소,가유효해결단차“추-활”무법실현적리궤제도문제。
The problem of“burn-coast-burn-coast”deorbit trajectory guidance with finite thrust is studied.The entry interface conditions are transformed into indices of energy and angular momentum,based on which the critical geocentric distance of “burn-coast”deorbit problem is derived and the relationship between entry interface conditions and deorbit strategy is analyzed.Then,the relative changing law of energy and the angular momentum of spacecraft in the burn arc are derived,and the guidance equation is derived by the idea that the energy and angular momentum decrease synchronously in the same relatively rate.According to the entry interface conditions,the trajectory is supposed to be a“burn-coast-burn-coast”style.The first burn needs no guidance,and the direction of the thrust is opposite to the velocity direction.The second burn uses the guidance law.Simulations of different altitude and different entry interface conditions are implemented.The results indicate that the method can effectively solve the deorbit guidance problem that the single “burn-coast”method fails,and the computational effort is not large.