计算机学报
計算機學報
계산궤학보
CHINESE JOURNAL OF COMPUTERS
2014年
4期
801-808
,共8页
社交网络%社交圈%朋友推荐%社团发现%相似性%社会计算
社交網絡%社交圈%朋友推薦%社糰髮現%相似性%社會計算
사교망락%사교권%붕우추천%사단발현%상사성%사회계산
social network%social circle%friend recommendation%community detection%similarity%social computing
为用户推荐朋友是在线社交网络的重要个性化服务。社交网站通过用户之间是否有相同属性信息或公共邻居判断他们能否成为朋友,但由于用户注册信息不完善和对公共邻居之间关系的忽略,推荐精度不高。事实上用户的朋友可以组成多个社交圈,拥有相似社交圈的用户更易成为朋友。因此,首先提出了社交圈检测算法,进而定义用户间的社交圈相似性,基于社交圈相似程度为用户推荐新朋友。使用YouTube 数据验证了该文假设;使用Facebook自我网络数据,验证了社交圈检测方法的有效性,并与3种典型检测算法比较;使用区域Facebook数据,通过与公共邻居、Jaccard相似性比较,进一步验证了朋友推荐方法的准确性。
為用戶推薦朋友是在線社交網絡的重要箇性化服務。社交網站通過用戶之間是否有相同屬性信息或公共鄰居判斷他們能否成為朋友,但由于用戶註冊信息不完善和對公共鄰居之間關繫的忽略,推薦精度不高。事實上用戶的朋友可以組成多箇社交圈,擁有相似社交圈的用戶更易成為朋友。因此,首先提齣瞭社交圈檢測算法,進而定義用戶間的社交圈相似性,基于社交圈相似程度為用戶推薦新朋友。使用YouTube 數據驗證瞭該文假設;使用Facebook自我網絡數據,驗證瞭社交圈檢測方法的有效性,併與3種典型檢測算法比較;使用區域Facebook數據,通過與公共鄰居、Jaccard相似性比較,進一步驗證瞭朋友推薦方法的準確性。
위용호추천붕우시재선사교망락적중요개성화복무。사교망참통과용호지간시부유상동속성신식혹공공린거판단타문능부성위붕우,단유우용호주책신식불완선화대공공린거지간관계적홀략,추천정도불고。사실상용호적붕우가이조성다개사교권,옹유상사사교권적용호경역성위붕우。인차,수선제출료사교권검측산법,진이정의용호간적사교권상사성,기우사교권상사정도위용호추천신붕우。사용YouTube 수거험증료해문가설;사용Facebook자아망락수거,험증료사교권검측방법적유효성,병여3충전형검측산법비교;사용구역Facebook수거,통과여공공린거、Jaccard상사성비교,진일보험증료붕우추천방법적준학성。
Recommending friends to registered users is a crucial personal service of Online SocialNetworks (OSN).OSN will recommend a friend to a user if they share some common attributesor neighbors.But the recommendation accuracy is usually not so good since users’profile infor-mation may be incomplete and the relationships between neighbors are ignored.In fact,users cangroup their friends into several social circles and two users are more likely to become friends ifthey share similar social circles.Therefore,a social circle detection algorithm is suggested atfirst,and then the social circle similarity is defined.Based on this similarity,we can recommendfriends to a user.Our hypothesis is verified by statistically analyzing the YouTube dataset.Toverify the efficiency of the social circle detection algorithm,the ego networks of Facebook areused.The experimental results show that compared with three typical detection methods,ourapproach can identify social circles efficiently and accurately.We utilize social circle similarity,common neighbor similarity andJaccard similarity to predict friend relationships in Facebook NewOrleans network.The experimental results provide strong evidence that our algorithm is moreprecise in friend recommendation.